검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 8

        1.
        2017.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The purpose of this study is to make a generalized analytical based on the proposed experiments on reinforced concrete(RC) partially infilled frames by U-type precast concrete(PC) wall panels with openings. RC frame and PC wall panels were connected with different strengths. Therefore, we developed modified strut-tie model(STM) with two seismic retrofitting specimens and conducted a nonlinear analysis by using a computer analysis program. Based on the test results, truss member of modified STM was designed, applying the strut-tie model theory of ACI 318M-11 Appendix- A. As a result, the modified STM analysis results were very similar to the experimental results. As a result of the load-displacement curve comparison, the failure load were similar within 5∼17% of error range. In particular, the experimental results and the results of modified STM analysis show that the failure behavior almost matched.
        4,200원
        2.
        2017.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Cyclic loading test was performed on the partially infilled reinforced concrete(RC) frames by L-type precast concrete(PC) wall panels with the connections of two different strength. Based on the results of experimental test, the nonlinear analysis was practiced with modified strut-tie model(STM) method by using a computer program. Truss member of modified STM was designed, applying the strut-tie model theory of ACI 318M-11 Appendix-A. Modified STM was designed with two ways according to the test result. PC wall panel and RC frame were assumed to composite when push loading applied. The PC and RC structures were also assumed to behave non-composite and those two structures connected with link(top connector) when pull loading applied. The connection was designed by using elastic link of program. The results of analytical modified STM process generally conform to the experimental results. The failure load and the failure mode of the specimens could be predicted using modified STM. The ratio of failure load measured in specimens to analytical values were between 0.83∼1.16. The member or connection which was failed in experiment yield in the results of modified STM. The failure mode perfectly matched.
        4,500원
        3.
        2017.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        When reinforcing an existing reinforced concrete beam-column building with a precast concrete panel, special connection between the PC member and the RC member is required to solve the time dependent deformation of the RC member and to receive the large shear forces. The aim of this study is to obtain the shear strength of upper connection between the existing RC beam-column and infilled PC wall panels in experimentally and theoretically. Thus, the static shear loading tests were conducted on the 6 specimens with the plate connection. Shear failure was resulted from the weakest portion of interior PC panel, exterior RC, and the connection, when the PC portion which located at the center of specimen was pulled upward from the bottom. T he experimental result was compared with analytical result from ACI 318M-14 Chapter 17 for the shear strength of post-installed anchor and PCI Handbook 7th edition 6.8 Structural Steel Corbel (PCI Design Handbook 7th edition, 2010) for the strength of cast-in H-beam. The analytical and experimental results show final failure at the same location. The failure loading of experiment showed larger than average 6% to that of the analysis.
        4,500원
        4.
        2015.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This study aims at developing a new seismic resistant method by using precast concrete wall panels for existing low-rise, reinforced concrete beam-column buildings such as school buildings. Three quasi-static hysteresis loading tests were performed on one unreinforced beam-column specimen and two reinforced specimens with U-type precast wall panels. Top shear connection of the PC panel was required to show the composite strength of RC column and PC wall panel. However, the strength of the connection did not influence directly on the ultimate loading capacities of the specimens in the positive loading because the loaded RC column push the side of PC wall panel and it moved horizontally before the shear connector receive the concentrated shear force in the positive loading process. Under the positive loading sequence(push loading), the reinforced concrete column and PC panel showed flexural strength which is larger than 97% of the composite section because of the rigid binding at the top of precast panel. Similar load-deformation relationship and ultimated horizontal load capacities were shown in the test of PR1-LA and PR1-LP specimens because they have same section dimension and detail at the flexural critical section. An average of 4.7 times increase in the positive maximum loading(average 967kN) and 2.7 times increase in the negative maximum loading(average 592.5kN) had resulted from the test of seismic resistant specimens with anchored and welded steel plate connections than that of unreinforced beam-column specimen. The maximum drift ratios were also shown between 1.0% and 1.4%.
        4,200원
        5.
        2017.04 서비스 종료(열람 제한)
        When reinforcing an existing reinforced concrete beam-column building with a precast concrete panel, special connection between the PC member and the RC member is required to solve the time dependent deformation of the RC member and to receive the large shear forces. The aim of this study is to obtain the shear strength of upper connection between the existing RC beam-column and infilled PC wall panels in experimentally and theoretically. Thus, the static shear loading tests were conducted on the 6 specimens with the plate connection. Shear failure was resulted from the weakest portion of interior PC panel, exterior RC, and the connection, when the PC portion which located at the center of specimen was pulled upward from the bottom. The experimental result was compared with analytical result from ACI 318M-14 Chapter 17 for the shear strength of post-installed anchor and PCI Handbook 7th edition 6.8 Structural Steel Corbel (PCI Design Handbook 7th edition, 2010) for the strength of cast-in H-beam. The analytical and experimental results show final failure at the same location. The failure loading of experiment showed larger than average 6% to that of the analysis.
        6.
        2017.01 KCI 등재 서비스 종료(열람 제한)
        When reinforcing an existing reinforced concrete beam-column building with a precast concrete panel, special connection between the PC member and the RC member is required to solve the time dependent deformation of the RC member and to receive the large shear forces. The aim of this study is to obtain the shear strength of upper connection between the existing RC beam-column and infilled PC wall panels in experimentally and theoretically. Thus, the static shear loading tests were conducted on the 6 specimens with the plate connection. Shear failure was resulted from the weakest portion of interior PC panel, exterior RC, and the connection, when the PC portion which located at the center of specimen was pulled upward from the bottom. The experimental result was compared with analytical result from ACI 318M-14 Chapter 17 for the shear strength of post-installed anchor and PCI Handbook 7th edition 6.8 Structural Steel Corbel (PCI Design Handbook 7th edition, 2010) for the strength of cast-in H-beam. The analytical and experimental results show final failure at the same location. The failure loading of experiment showed larger than average 6% to that of the analysis.
        7.
        2015.11 KCI 등재 서비스 종료(열람 제한)
        이 연구의 목표는 학교 건물과 같은 저층 보-기둥 철근콘크리트 구조 건물에서 프리캐스트 벽패널을 사용한 새로운 내진보강 방법 을 개발하는데 있다. 1개의 무 보강 보-기둥 실험체와 U형 PC 패널로 보강한 2개의 보강 보-기둥 실험체에 대한 정적 이력 하중실험을 진행하 였다. 앵커 접합부 실험체는 전단 파괴될 것으로 해석되었고 철판 용접 접합부 실험체는 휨 파괴할 것으로 예측되었다. 실험체의 종국 내력은 상부 접합부의 전단 내력과 PC 패널 절곡 부 휨 위험단면에서 휨 내력 중 약한 것으로 결정되었다. 이 실험체에서, 한쪽 RC기둥이 가 하중(미는 실험 하중)을 받아 PC 패널 부재를 밀게 된다면, 다른 쪽 내부 수직부재는 상부 전단 접합부로부터 부 하중(당기는 실험 하중)을 받게 되어있었 다. 가 하중을 받는 2개의 부재는 합성 휨 거동이 지배적이므로 합성단면의 휨 내력이 실험체의 최종 내력을 결정하게 되지만, 이 경우 최종 내 력에 대하여 상부 전단 접합부 강도의 직접적인 영향은 없다고 볼 수 있다. 그러나 부 하중(당기는 하중)을 받는 RC 기둥과 PC 패널 부재는 비 합성 거동이 지배적이고 실험체의 최종 내력은 상부 전단 접합부 전단내력의 크기에서 직접 영향을 받는 것으로 파악되었다. ACI 318M-11 Appendix-D 앵커 전단설계에 기초한 전단내력 그리고 실험에서 얻은 최대하중을 적용하여 마이다스 젠 탄성설계에 의하여 계산한 전단 외력 에 대한 비교 해석결과는 실험결과와 일치하는 해석결과를 보여주었다.
        8.
        2015.09 KCI 등재 서비스 종료(열람 제한)
        이 연구의 목표는 학교 건물과 같은 저층 보-기둥 철근콘크리트 구조 건물에서 프리캐스트 벽패널을 사용한 새로운 내진보강 방법을 개발하는 것이다. 1개의 무 보강 보-기둥 실험체와 U형 PC 벽패널로 보강한 2개의 보강 보-기둥 실험체에 대한 정적 이력 하중실험을 진행하였다. 앵커접합 PR1-UA 실험체와 철판접합 PR1-UP 실험체는 무 보강 실험체보다 평균 2.8배(평균 591.8 kN)의 강도 증가를 보여 주었다. 최대 변위비도 1.4%에서 2.7%사이 값을 보여주었다. RC 골조 우측 상단에서 좌측방향으로 가력 할 때 우측에 있는 RC 기둥과 보강 PC 패널의 수직 요소는 완전 합성상태로 가정하였고, 좌측에 있는 RC 기둥과 PC 패널은 완전 비 합성 거동하는 것으로 가정하여 해석한 결과 전체적인 휨 거동은 실험 결과와 대체적으로 부합하는 것으로 판단되었다.