A new High Frequency Induction Heating (HFIH) process has been developed to fabricate dense reinforced with Fe-Ni magnetic metal dispersion particles. The process is based on the reduction of metal oxide particles immediately prior to sintering. The synthesized /Fe-Ni nanocomposite powders were formed directly from the selective reduction of metal oxide powders, such as NiO and . Dense /Fe-Ni nanocomposite was fabricated using the HFIH method with an extremely high heating rate of . Phase identification and microstructure of nanocomposite powders and sintered specimens were determined by X-ray diffraction and SEM and TEM, respectively. Vickers hardness experiment were performed to investigate the mechanical properties of the /Fe-Ni nanocomposite.
In-situ processing route was adopted to disperse carbon nanotubes (CNTs) into powders homogeneously. The composite powders with homogeneous dispersion of CNTs could be synthesized by a catalytic route for in-situ formation of CNTs on nano-sized Fe dispersed powders. CNTs/Fe/ nanopowders were densified by spark plasma sintering (SPS). The hardness and bending strength as well as electrical conductivity increased with increasing sintering temperature. However, the electrical conductivity of the composites sintered at above showed decreased value with increasing sintering temperature due to the oxidation of CNTs
An optimum route to synthesize composite powders with homogeneous dispersion of carbon nanotubes (CNTs) was investigated. nanocomposite powders were fabricated by thermal chemical vapor deposition of gas over nanocomposite catalyst prepared by selective reduction of metal powders. The FT-Raman spectroscopy analysis revealed that the CNTs have single- and multi-walled structure. The CNTs with the diameter of 25-43 nm were homogeneously distributed in the powders, and their characteristics were strongly affected by a kind of metal catalyst and catalyst size. The experimental results show that the composite powder with required size and dispersion of CNTs can be realized by control of synthesis condition