Ice accumulation on Aluminum Conductor Steel Reinforced(ACSR) cable during winter is an important matter in terms of safety, economy, and efficient power supply. In this work, the ice adhesion strengths of ACSR cable oxidized during different periods(7 years oxidized and 15 years oxidized) are evaluated. At first, a plate type dry oxidation standard specimen, whose surface characteristics are similar to those of ACSR cable, is prepared. Dry oxidation standard specimens are heat-treated at 500 °C for 20, 60, and 120 minutes in order to obtain different degrees of oxidation. After the dry oxidation, surface properties are analyzed using contact angle analyzer, atomic force microscopy, spectrophotometer, and gloss meter. The ice adhesion strengths are measured using an ice pull-off tester. Correlations between the surface properties and the ice adhesion strength are obtained through a regression analysis indicating a Boltzmann equation. It is revealed that the ice adhesion strength of 15- year oxidized ACSR cable is approximately 8 times higher than that of ACSR-bare.
Severe wall thinning is found on the tube of a low-pressure evaporator(LPEVA) module that is used for a heat recovery steam generator(HRSG) of a district heating system. Since wall thinning can lead to sudden failure or accidents that lead to shutdown of the operation, it is very important to investigate the main mechanism of the wall thinning. In this study, corrosion analysis associated with a typical flow-accelerated corrosion(FAC) is performed using the corroded tube connected to an upper header of the LPEVA. To investigate factors triggering the FAC, the morphology, composition, and phase of the corroded product of the tube are examined using optical microscopy, scanning electron microscopy combined with energy dispersive spectroscopy, and x-ray diffraction. The results show that the thinnest part of the tube is in the region where gas directly contacts, revealing the typical orange peel type of morphology frequently found in the FAC. The discovery of oxide scales containing phosphate indicates that phosphate corrosion is the main mechanism that weakens the stability of the protective magnetite film and the FAC accelerates the corrosion by generating the orange peel type of morphology.
Fatigue crack growth retardation of 304 L stainless steel is studied using a neutron diffraction method. Three orthogonal strain components(crack growth, crack opening, and through-thickness direction) are measured in the vicinity of the crack tip along the crack propagation direction. The residual strain profiles (1) at the mid-thickness and (2) at the 1.5 mm away from the mid-thickness of the compact tension(CT) specimen are compared. Residual lattice strains at the 1.5 mm location are slightly higher than at the mid-thickness. The CT specimen is deformed in situ under applied loads, thereby providing evolution of the internal stress fields around the crack tip. A tensile overload results in an increased magnitude of the compressive residual stress field. In the crack growth retardation, it is found that the stresses are dispersed in the crack-wake region, where the highest compressive residual stresses are measured. Our neutron diffraction mapping results reveal that the dominant mechanism is by interrupting the transfer of stress concentration at the crack tip.
The use of continuous welded rail is increasing because of its many advantages, including vibration reduction, enhanced driving stability, and maintenance cost savings. In this work, two different types of continuous welded rails were examined to determine the influence of repeated wheel-rail contact on the crystal structure, microstructure and mechanical properties of the rails. The crystal structure was determined by x-ray diffraction, and the microstructure was examined using optical microscopy and scanning electron microscopy. Tensile and microhardness tests were conducted to examine the mechanical behaviors of prepared specimens taken from different positions in the cross section of both newly manufactured rail and worn rail. Analysis revealed that both the new and worn rail had a mixed microstructure consisting of ferrite and pearlite. The specimens from the top position of each rail exhibited decreased lamella spacing of the pearlite and increased yield strength, ultimate tensile strength and hardness, as compared with those from other positions of the rail. It is thought that the enhanced mechanical property on the top position of the worn rail might be explained by a mixed effect resulting from a directional microstructure, the decreased lamella spacing of pearlite, and work hardening by the repeated wheel-rail contact stress.
Evaluation of the durability and stability of materials used in power plants is of great importance because parts or components for turbines, heat exchangers and compressors are often exposed to extreme environments such as high temperature and pressure. In this work, high-temperature corrosion behavior of 316 L stainless steel in a carbon dioxide environment was studied to examine the applicability of a material for a supercritical carbon dioxide Brayton cycle as the next generation power plant system. The specimens were exposed in a high-purity carbon dioxide environment at temperatures ranging from 500 to 800 oC during 1000 hours. The features of the corroded products were examined by optical microscope and scanning electron microscope, and the chemical compound was determined by x-ray photoelectron spectroscopy. The results show that while the 316 L stainless steel had good corrosion resistance in the range of 500-700 oC in the carbon dioxide environment, the corrosion resistance at 800 oC was very poor due to chipping the corroded products off, which resulted in a considerable loss in weight.
토산 늙은 호박을 삶아 가당하여 효모로 발효시키는 호박술 제조 방법을 개발하였다. 호박농도를 15%로 하고, 설탕을 20%, 25%, 30% 가하여 Saccharomyces cerevisae로 발효시킨 결과 당농도 25%에서 발효시킨 제품이 색, 향취, 맛의 기호도면에서 가장 우수하였다. 호박농도 15%, 당농도 25%에서 18일 동안 발효시킨 제품의 총당은 80mg/ml, 환원당은 70mg/ml, pH는 3.6, 산도는 2.1, 에틸알코올 함량은 12도였다.
본 연구에서는 서리태 발효추출물의 모발보호효과를 확인하기 위한 연구를 수행하였다. 화학적 산화를 통해 손상된 모발을 준비한 뒤 서리태 발효추출물을 처리하였을 때 모발의 형태학적 특성, 인장강도, 구성성분의 변화를 분석하여 비교하였다. 그 결과 모발에 산화제를 처리하였을 때, 표피의 큐티클 층이 손상되고 모발의 인 장강도가 14.32 ± 0.83 g/cm2에서 12.32 ± 0.79 g/cm2로 감소되었음을 확인하였다. FT-IR 분석결과 산화 제를 처리한 모발은 버진 헤어에 비하여 1,077, 1,041, 801 cm-1에 해당하는 피크가 증가하였으며, 이를 통해 케라틴 단백질 간의 이황화 결합에 필수적인 시스테인이 산화되는 것을 확인하였다. 반면, 손상된 모발에 서리태 발효추출물을 처리한 경우에는 표피의 큐티클 층의 틈이 메워지고, 인장강도가 14.27 ± 0.96 g/cm2로 회복되 었으며, 모발의 성분 중 시스테인의 산화물 비율이 감소하는 것으로 분석되었다. 이러한 결과들을 통해 발효 서 리태 추출물은 산화제에 의해 손상된 모발의 보호 소재로 연구될 가치가 있는 것으로 기대된다.