일반적인 구조용 강재의 경우 항복변형률의 이상의 변형을 경험한 이후에 하중을 제거하면 재가력되는 시점에 따라 서 재료의 항복강도는 증가하고 연성이 감소하는 현상을 보인다. 원형강관의 경우 철판을 말아서 제작하는 과정에서 철판의 두 께와 원형강관의 직경에 따라서 항복변형률이상의 큰 변형을 경험하게 되고 이러한 변형은 제작된 강관의 구조적인 성능에 많 은 영향을 미친다. 이러한 이유에서 제작과정에 발생하는 변형이 원형강관의 구조성능에 미치는 영향을 파악할 필요가 있다. 따 라서, 이 연구에서는 원형강관을 제작하는 경우에 발생하는 변형에 의한 철판의 항복강도, 인장강도 및 연성 등의 영향을 파악 하기 위해서 강관의 직경 및 두께와 시험편을 채취한 방향을 변수로 다수의 인장실험을 수행하고 이를 분석하였다. 실험 결과 를 바탕으로 원형강판에서 채취한 시험편은 코일에서 채취한 시험편에 비해 항복강도와 인장강도가 더 높았고, 연신율은 낮아 진 것으로 나타났다.
Intracellular reactive oxygen species(ROS) produced in a various pathologic state was known to intermediate many cellular response such as inflammation. Recently, low level light irradiation by HeNe laser used in many clinical field could improve inflammatory state by scavenging intracellular ROS through photo-detachment/dissociation process. The purpose of this study is to investigate the differential effects of blue and red light irradiation on ROS scavenging effects. Immortalized human oral keratinocyte HaCat cells were used. Phorbol 12-myristate 13-acetate(PMA) was treated for inflammation. Red(635nm) and blue(470nm) light irradiation was carried out. To asses the intracellular ROS by light irradiation, confocal microscopic and flow cytometric assay with DCF fluorescence for total ROS and ESR spectrometry of DMPO-O2 - for superoxide anion were caried out. And microarray was performed for mRNA expression level. Released intracellular total ROS in PMA treated HaCat cell lines was dissociated efficiently by red light irradiation, while blue light irradiation did not. Rather, blue light irradiation increased ROS formation. For superoxide anion generated the first synthetic form of ROS, red light irradiation reduced its amount but blue light irradiation did not. In the mRNA expression in line with cyclooxygenase(COX) pathway, prostagrandin endoperoxide synthase 1(PTGS 1), prostagrandin endoperoxide synthase 2(PTGS 2) and phospholipase A2(PLA2) were increased by both light irradiation and they were decreased as time flows. And genes associated with ROS releasing, mRNA expressions of tumor necrosis factor receptor (TNFR) and interleukin 1beta(IL1B) were increased by 1 hour red light irradiation but did not by blue light irradiation. As a result, red and blue light irradiation showed different response in affecting the level of ROS. These findings indicate that red light rather than blue light is more useful for anti-inflammation in clinical field
The phytochemicals of many plants suggest their potential use as dietary supplements in cancer chemoprevention and chemotherapy. In the present study, antitumor activity of Cudrania tricuspidata, a plant native to East Asia, was investigated. Cell growth inhibition of the extract on HT-29 colorectal adenocarcinoma using MTT colorimetric assay was determined. Apoptosis on HT-29 cells was performed by DNA fragmentation analysis. PGE2 release was measured by enzyme immunoassay, because PGE2 is a key protumorigenic prostanoid in many human cancers. For the ROS scavenging activity, ROS level was detected by laser scanning confocal microscope. It was found that methanol extract of leaves inhibits cell viability by inducing apoptosis as evidenced by DNA fragmentation. Stem bark decreases synthesis of PGE2, inflammatory mediator. Fruits exhibited pronounced ROS scavenging activity. Taken together, these results suggest that Cudrania tricuspidata exerts growth inhibition and anti-oxidation on HT-29 cells through apoptosis, ROS scavenging respectively that it may have anti-cancer properties.