검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 5

        1.
        2024.11 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Semiconductors, optimized for artificial intelligence (AI) applications, are efficiently handling large-scale data processing and complex computations with high speed and low power consumption. They accelerate AI model training and inference in data centers, cloud services, autonomous vehicles, and mobile devices. As demand for high-speed data transmission and extensive data processing grows, global companies are developing proprietary AI semiconductors, and subsequently, high-density packaging technologies are needed to interconnect multiple processor chips. To achieve this, an interposer is required. An interposer is a layer used in packaging technology for combining multiple chips, which includes wiring that is inserted to electrically connect a semiconductor chip with a substrate that has a significant pitch difference. Among the materials employed as substrates or interposers, organic, silicon and glass are being considered. While silicon interposers are usually used to connect the main substrate and multiple chips, producing very thin silicon wafers and controlling warpage is challenging, and so they suffer from poor yield and integration. Also, organic substrates have difficulty achieving fine pitch because of their uneven surface and warpage. On the other hand, glass substrates and interposers have good electrical and thermal properties. For this reason, this study investigated AI semiconductor packaging trends and through glass via (TGV) technology, emphasizing the importance of suitable glass material selection, reliable glass-metal bonding and application to solder bumping on TGV. Advances in AI and TGV technologies are expected to drive next-generation AI semiconductor packaging development.
        4,000원
        2.
        2005.02 구독 인증기관 무료, 개인회원 유료
        Before incorporating the earthquake-resistance design in design code(1988), most of existing residential buildings were built without having lateral resistance capacity in addition to their structural peculiarity such as exterior stair ways, exterior elevator room. For these reasons, the retrofitting research demands for existing buildings arise recently and many retrofitting methods are proposed. These tasks are irnportant to reduce the enormous economic loss and environmental issues. The objective of this study is to predict the perforrnance increase due to various strengthen schemes and suggest adequate strengthen methods for wall type apartment buildings not designed to resist earthquake.
        4,000원
        3.
        2004.08 구독 인증기관 무료, 개인회원 유료
        Before incorporating the earthquake-resistance design in design code(1998), most of existing residential buildings were built without having lateral resistance capacity in addition to their structural peculiarity such as exterior stair ways, exterior elevator room. For these reasons, the retrofitting research demands for existing buildings arise recently and many retrofitting methods are proposed. These tasks are important to reduce the enormous economic loss and environmental issues. In this study, Scaled residential buildings with/without lateral resistance were tested and monitored with external lateral load especially toward the longer side of the building. From these experiments, enhanced retrofitting methods of old shear wall system are proposed and also compared with structural analysis.
        4,000원
        4.
        2003.08 구독 인증기관 무료, 개인회원 유료
        Recently the construction of residential building faces many difficulties due to the shortage of building materials and works. Simplifying the stage of processing and assembling reinforcing rods and increasing the efficiency of them in reinforced concrete construction can be used to settle the difficulties. In the respect, structural wire-fabric is utilized. The purpose of this study, instead of deformed steel bars, to examine the utilization of slab joint, which is accompanied with a large deformation in the structure subjected to seismic loads, to suggest reinforcing method which is efficient, easily constructible and structurally safe. The results are as follows ; 1. The ductility capacity of continuous slab joints reinforced by welded wire fabric is less than that with deformed bar. But continuous slab joint is reinforced by deformed bar for the longitudinal reinforcement, it is increase strength and ductility capacity. 2. It is recommended that simple cut jointing of welded wire fabric should be avoided in wall-wall joints.
        4,000원