검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 5

        1.
        2015.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        To improve stability of the water resources that were seriously affected by climate change and various environmental effects and to supply the clean water always, continuous efforts are essential. Provision of measures with respect of hardware is basically essential to improve the water resources stability due to the topographic characteristic in Korea. However, building a new dam becomes gradually very difficult because of a hardship in selecting right places, opposition forces such as environment and local residents, negative publicity for large civil engineering projects, and so on. The present study, therefore, proposes the Blue dam as an alternative for securing the water resources of a new concept considering domestic conditions. To evaluate the effect of the Blue dam, the Hec-ResSim model is used and the probabilistic discharge flow rate is applied. As a result, when Dam Yeongcheon is applied as a study area, securing water resources of 14 million tons are predicted be secured and the flood control of 15.4 million tons is expected, in comparison with operation of the existing dam only. Consequently, Blue dams are supposed to carry out the function of securing water resources, controling flood, maintaining eco-environmental instream flow, generating hydroelectric power, and providing spaces for recreational activities.
        4,000원
        2.
        2015.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        A combined treatment system using multiple source water is becoming important as an alternative to conventional water supply for small-scale water systems. In this research, combined water treatment systems were investigated for simultaneous use of multi-source water including rainwater, ground water, river water, and reclaimed wastewater. A laboratory-scale system was developed to systematically compare various combinations of water treatment processes, including sand filtration, microfiltration (MF), granular activated carbon (GAC), and nanofiltration (NF). Results showed that the efficiency of combined water treatment systems was affected by the quality of feed waters. In addition, a simply approach based on the concept of linear combination was suggested to support a decision-making for the optimum water treatment systems with the consideration of final water quality.
        4,000원
        3.
        2014.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        지붕이나 여러 가지 방법과 장소에서 수집된 빗물을 처리하면 직접적 간접적으로 유익하게 사용될 수 있다. 이러한 빗물은 점점 더 높은 품질을 위해 고려되고 있고, 분리막은 이러한 빗물 처리를 위한 중요한 기술이다. 특히, 분리막은 고품질 물 생산, 높은 집적도 및 낮은 에너지 소비 등의 장점이 있다. 그럼에도 불구하고, 막오염은 수처리 및 폐수 재활용 부분과 마찬가지로 심각한 문제로 간주되고 있다. 본 연구에서는 빗물 처리에 정밀여과(MF)막을 적용하였고, 저압 자외선(LPUV)처리를 정밀여과막의 전처리로 사용하였다. 유기물에 대한 UV의 영향을 정량화하기 위해 총 유기탄소(TOC) 및 UV 흡광도(UVA)를 모두 측정하였다. 또한 UV 전처리 효과에 따른 막의 오염 정도를 조사하였다. LPUV 전처리를 하고 실험을 한 결과 조류에 의해 오염된 빗물에서 막의 오염을 제어하는데 효과적임을 알 수 있었으며, 이것은 UV 처리 후 유기물의 양이 감소하고 특성이 변화하기 때문이었다. 따라서 UV/MF 처리는 마이크로 워터 그리드 시스템과 같은 수처리를 위한 유망한 옵션이 될 수 있을 것으로 생각된다.
        4,000원
        4.
        2014.04 KCI 등재 서비스 종료(열람 제한)
        This study aimed for evaluating the applicability of the two stage dual media filtration system in field water treatment plant. The field plant of two stage and dual media filtration system was operated for 2 months. Average iron concentrations of the settled water, existing filtered water and second stage filtered water was 0.041 mg/L, 0.007 mg/L and 0.005 mg/L, respectively. Removal efficiency of iron concentration in the second stage is appropriately 35% more than in existing filtered water. Also removal efficiency of residual chlorine in the dual media filtration system is relatively 42.3% more than in existing filtered water due to adsorption of activated carbon, but the removal of ammonia nitrogen by adsorption is insufficient. Average concentrations of THM and chloroform in the settled water are 0.033 mg/L, 0.026 mg/L, respectively and in existing filtered water are 0.023 mg/L and 0.023 mg/L. Average concentrations of THM and chloroform in the dual media filtration system are 0.008 mg/L and 0.013 mg/L. Therefore removal efficiency of THM concentration in second stage is more than 66.4% in existing filtrated water. Also removal efficiency of chloroform in the dual media filtration system is more than 50.0% in existing filtered water because of the adsorption of activated carbon. In this case backwashing period in dual stage system is 4~5 days, but in existing filtration system is 1~2 days.