검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 7

        1.
        2023.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Timber structures are susceptible to moisture, contamination, and pest infestation, which can compromise their integrity and pose a significant fire hazard. Despite these drawbacks, timber's lightweight properties, eco-friendliness, and alignment with current architectural trends emphasizing sustainability make it an attractive option for construction. Moreover, timber structures offer economic benefits and provide a natural aesthetic that regulates building temperature and humidity. In recent years, timber domes have gained popularity due to their high recyclability, lightness, and improved fire resistance. Researchers are exploring hybrid timber and steel domes to enhance stability and rigidity. However, shallow dome structures still face challenges related to structural instability. This study investigates stability problems associated with timber domes, the behavior of timber and steel hybrid domes, and the impact of timber member positioning on dome stability and critical load levels. The paper analyzes unstable buckling in single-layer lattice domes using an incremental analysis method. The critical buckling load of the domes is examined based on the arrangement of timber members in the inclined and horizontal directions. The analysis shows that nodal snapping is observed in the case of a concentrated load, whereas snap-back is also observed in the case of a uniform load. Furthermore, the use of inclined timber and horizontal steel members in the lattice dome design provides adequate stability.
        4,000원
        2.
        2022.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this paper, the instability of the domed spatial truss structure using wood and the characteristics of the buckling critical load were studied. Hexagonal space truss was adopted as the model to be analyzed, and two boundary conditions were considered. In the first case, the deformation of the inclined member is only considered, and in the second case, the deformation of the horizontal member is also considered. The materials of the model adopted in this paper are steel and timbers, and the considered timbers are spruce, pine, and larch. Here, the inelastic properties of the material are not considered. The instability of the target structure was observed through non-linear incremental analysis, and the buckling critical load was calculated through the singularities and eigenvalues of the tangential stiffness matrix at each incremental step. From the analysis results, in the example of the boundary condition considering only the inclined member, the critical buckling load was lower when using timber than when using steel, and the critical buckling load was determined according to the modulus of elasticity of timber. In the case of boundary conditions considering the effect of the horizontal member, using a mixture of steel and timber case had a lower buckling critical load than the steel case. But, the result showed that it was more effective in structural stability than only timber was used.
        4,000원
        3.
        2019.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this paper, the shape adjustment algorithm of the spoked wheel cable structures with retractable membrane system is studied. The initial tension of the membrane or cable is necessary to form the structure and its value is determined by the design shape. However, due to internal and external environmental influences, its shape may be different from the initial designed shape. In the case of the cable structures covered in this study, tension adjustment is necessary to maintain the designed shape because it influences the tension of the cable depending on the state of the retractable membrane. Therefore, we proposed an adjustment algorithm of an initial shape based on the force method. The effectiveness and validity of the methodology were examined through the applicable cable structures. The results of the shape adjustment analysis of the symmetric spoked wheel cable model were reliable and accurate results were obtained.
        4,000원
        5.
        2016.10 서비스 종료(열람 제한)
        Shell structure that is best used for the long span structure is a structure which can effectively resist against the external load. But these structure has instability like snap-through and bifurcation buckling, and it has a characteristic sensitive to the initial conditions. Therefore, to determine the analysis model of DDOF Space Truss and when the beating load was applied in model, we confirmed the changing results for height and load.
        6.
        2015.10 서비스 종료(열람 제한)
        This study is to solve the structural optimization problem by a quantum-inspired harmony search algorithm. For the optimization, we suggest the mathematical modeling of the plane truss which is possible to minimum weight design. In its model, the cost function is minimum weight and constraint function consists of the stress.