검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 166

        41.
        2010.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        HDDR treated anisotropic Nd-Fe-B powders have been widely used for the sheet motors and the sunroof motors of hybrid or electric vehicles, due to their excellent magnetic properties. Microstructural alignment of HDDR treated powders are mostly depending on the hydrogen reaction in disproportionation step, so the specific method to control hydrogenation reaction is required for improving magnetic properties. In disproportionation step, hydrogenation pressure and reaction time were controlled in the range of 0.15~1.0 atm for 15~180 min in order to control the micorstructural alignment of phase and, at the same time, to improve remanence of HDDR treated magnet powders. In this study, we could obtain a well aligned anisotropic Nd-Fe-B-Ga-Nb alloy powder having high remanence of 12 kG by reducing hydrogen pressure down to 0.3 atm in disproportionation step.
        4,000원
        42.
        2009.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        HDDR treated anisotropic Nd-Fe-B powders have been widely used, due to their excellent magnetic properties, especially for sheet motors and sunroof motors of hybrid and electric vehicles. Final microstructure and coercivity of such Nd-Fe-B powders depend on the state of starting mother alloys, so additional homogenization treatment is required for improving magnetic properties of them. In this study, a homogenization treatment was performed at in order to control the grain size and Nd-rich phase distribution, and at the same time to improve coercivity of the HDDR treated magnetic powders. FE-SEM was used for observing grain size of the HDDR treated powder and EPMA was employed to observe distribution of Nd-rich phase. Magnetic properties were analyzed with a vibrating sample magnetometer.
        4,000원
        43.
        2009.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The ultrafine titanium carbonitride particles () below 100nm in mean size were successfully synthesized by Mg-thermal reduction process. The nanostructured sub-stoichiometric titanium carbide () particles were produced by the magnesium reduction at 1123K of gaseous and the heat treatments in vacuum were performed for five hours to remove residual magnesium and magnesium chloride mixed with . And final phase was obtained by nitrification under normal gas at 1373K for 2 hrs. The purity of produced particles was above 99.3% and the oxygen contents below 0.2 wt%. We investigated in particular the effects of the temperatures in vacuum treatment on the particle refinement of final product.
        4,000원
        44.
        2008.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Nano-sized tungsten disulfide () powders were synthesized by chemical vapor condensation (CVC) process using tungsten carbonyl () as precursor and vaporized pure sulfur. Prior to the synthesis of tungsten disulfide nanoparticles, the pure tungsten nanoparticles were produced by same route to define the optimum synthesis parameters, which were then successfully applied to synthesize tungsten disulfide. The influence of experimental parameters on the phase and chemical composition as well as mean size of the particles for the produced pure tungsten and tungsten disulfide nanoparticles, were investigated
        4,000원
        45.
        2008.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Ultrafine TiC-5%Co powders were synthesized by spray drying of aqueous solution of TiO slurry and cobalt nitrate, followed by calcination and carbothermal reaction. The oxide powders with carbon powder was reduced and carburized at under hydrogen atmosphere. During reduction, CO gas was mainly evolved by reducing reaction of oxides. Ultrafine TiC-5%Co powders were easily formed by carbothermal reaction at due to using ultrafine powders as raw materials. The ultrafine WC-TiC-Co alloy prepared by sintering of mixed powder of ultrafine WC-13%Co powder and ultrafine TiC-5%Co powder has higher sintered density and mechanical properties than WC-TiC-Co alloy prepared by commercial WC, TiC and Co powders
        4,000원
        46.
        2007.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Ordered to FePt nanoparticles are strong candidates for high density magnetic data storage media because the phase FePt has a very high magnetocrystalline anisotropy , high coercivity and chemical stability. In this study, the ordered FePt nanoparticles were successfully fabricated by chemical vapor condensation process without a post-annealing process which causes severe particle growth and agglomeration. The nanopowder was obtained when the mixing ratio of Fe(acac) and Pt(arac) was 2.5 : 1. And the synthesized FePt nanoparticles were very fine and spherical shape with a narrow size distribution. The average particle size of the powder tended to increase from 5 nm to 10 nm with increasing reaction temperature from to . Characterisitcs of FePt nanopowder were investigated in terms of process parameters and microstructures.
        4,000원
        47.
        2006.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Ni based() bulk metallic glass(BMG) powders were produced by a gas atomization process, and ductile Cu powders were mixed using a spray drying process. The Ni-based amorphous powder and Cu mixed Ni composite powders were compacted by a spark plasma sintering (SPS) processes into cylindrical shape. The relative density varied with the used SPS mold materials such as graphite, hardened steel and WC-Co hard metal. The relative density increased from 87% to 98% when the sintering temperature increased up to in the WC-Co hard metal mold.
        4,000원
        50.
        2005.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The p-type semiconductor thermoelectric materials were fabricated by melting, milling and sintering process and their thermoelectric properties were characterized. The compound materials were ball-milled with milling time and the powders were sintered by spark plasma sintering process. The ball milled powders had equiaxial shape and approedmately in size. The figure of meritz of sintered thermoelectric materials decreased with milling time because of lowered electrical resistivity. The thermoelectric properties of materials have been discussed in terms of electrical property with ball mill process.
        4,000원
        51.
        2005.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        1990년도 초반에 개발되어 나노분말의 제조 공정으로 집중적으로 연구되어온 화학기상응축공정은 고강도용 나노분말 소재이외에 기능성 자성재료로의 응용에 주로 이용되어 왔다. 최근에는 이러한 응용이외에 나노분말의 표면을 다양한 이종 소재로 응용하고자하는 나노캡슐(혹은 core/shell)화 제조 공정으로 진보되어 다양한 합금 시스템으로 발전하게 되었다. 특히 최근 Particles 2005, Surface Modification in Particle Tech
        4,000원
        57.
        2005.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In order to prevent the oxide formation on the surface of nano-size iron particles and thereby to improve the oxidation resistance, iron nanoparticles synthesized by a chemical vapor condensation method were directly soaked in hexadecanethiol solution to coat them with a polymer layer. Oxygen content in the polymer-coated iron nanoparticles was significantly lower than that in air-passivated particles possessing iron-core/oxide-shell structure. Accordingly, oxidation resistance of the polymer-coated particles at an elevated temperature below in air was times higher than that of the air- passivated particles.
        4,000원
        58.
        2004.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Ultrafine titanium carbide particles were synthesized by the reaction of liquid-magnesium and vaporized TiCl+CCl(x = 1 and 2) solution. Fine titanium carbide particles with about 50 nm were successfully produced by combining Ti and C atoms released by chloride reduction of magnesium, and vacuum was then used to remove the residual phases of MgCl and excess Mg. Small amounts of impurities such as O, Fe, Mg and Cl were detected in the product, but such problem can be solved by more precise process control. The lattice parameter of the product was 0.43267 nm, near the standard value. With respect to the reaction kinetics, the activation energy for the reactions of TiCl+CCland Mg was found to 69 kJ/mole, which was about half value against the use of TiCl+CCl, and such higher reactivity of the former contributed to increase the stoichiometry until the level of TiC and decrease the free carbon content below 0.3 wt.%.
        4,000원
        1 2 3 4 5