검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 230

        44.
        2007.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        We have preliminarily designed two infrared optical systems of the multi-purpose infrared camera system (MIRIS) which is the main payload of STSAT-3. Each optical system consists of a Cassegrain telescope, a field lens and a 1:1 re-imaging lens system that is essential for providing a cold stop. The Cassegrain telescope is identical for both of two infrared cameras, but the field correction lens and re-imaging lens system are different from each other because of different bands of wavelength. The effective aperture size is 100mm in diameter and the focal ratio is f/5. The total length of the optical system is 300mm and the position of the cold stop is 25mm from the detector focal plane. The RMS spot size is smaller than 40μm over the whole detector plane.
        4,000원
        45.
        2007.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The detection and measurement of faint features in cometary image is generally troublesome due to the high value of the ratio of the brightness of the nucleus to the tail, the large size and low surface brightness of the coma and tail and the disturbing presence of field stars trails. The image processing is based on background removal by median filtering. Sample results are shown for the case study of comet 73P/Schwassmann-Wachmann 3.
        4,000원
        46.
        2007.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        We present the sensitivity calculation results for observing the Cosmic Infrared Background (CIRB) by the Multi-purpose IR Imaging System (MIRIS), which will be launched in 2010 as a main payload of the Science and Technology Satellite 3 (STSAT-3). MIRIS will observe in I ( 0.9∼1.2um) and H (1.2∼2.0um) band with a 4×4 degree field of view to obtain the large scale structure ( ∼3 degree) of the CIRB. With the given specifications of the MIRIS, our sensitivity calculation results show that the MIRIS has a detection limit of ∼9nWm−2sr−1 (I band) and ∼6nWm−2sr−1 (H band), which is appropriate to observe the large scale structure of CIRB.
        4,000원
        57.
        2006.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        We have developed a control electronics system for an infrared detector array of KASINICS (KASI Near Infrared Camera System), which is a new ground-based instrument of the Korea Astronomy and Space science Institute (KASI). Equipped with a 512×512 InSb array (ALADDIN III Quadrant, manufactured by Raytheon) sensitive from 1 to 5μm, KASINICS will be used at J, H, Ks, and L-bands. The controller consists of DSP(Digital Signal Processor), Bias, Clock, and Video boards which are installed on a single VME-bus backplane. TMS320C6713DSP, FPGA(Field Programmable Gate Array), and 384-MB SDRAM(Synchronous Dynamic Random Access Memory) are included in the DSP board. DSP board manages entire electronics system, generates digital clock patterns and communicates with a PC using USB 2.0 interface. The clock patterns are downloaded from a PC and stored on the FPGA. UART is used for the communication with peripherals. Video board has 4 channel ADC which converts video signal into 16-bit digital numbers. Two video boards are installed on the controller for ALADDIN array. The Bias board provides 16 dc bias voltages and the Clock board has 15 clock channels. We have also coded a DSP firmware and a test version of control software in C-language. The controller is flexible enough to operate a wide range of IR array and CCD. Operational tests of the controller have been successfully finished using a test ROIC (Read-Out Integrated Circuit).
        4,000원
        58.
        2006.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The KASINICS (KASI Near Infrared Camera System) is a ground-based Near-Infrared (NIR) imaging instrument developed by the Korea Astronomy and Space Science Institute (KASI). In this paper, we report the test results of the KASINICS camera optics system which is comprised of a 1-1 Offner relay. We measure that the surface RMS fluctuations of the Offner mirrors are at the level of 10−1−10−2 of the target wavelengths, showing that the mirrors are sufficiently smooth for NIR observations. The alignment of the Offner optics system has been checked too. Our ray-tracing simulations find that the image quality should not degrade more than the pixel size of the KASINICS ( 40μm), if a de-centering or a tilt of the Offner mirrors are within 5mm, or 2.5° . Our measurement shows that the de-centering or the tilt of the Offner mirrors are less than 1 mm or 0.5° , assuring that the KASINICS image quality are not affected by the alignment errors. We have also measured that the optics resolution is 20μm and it does not degrade more than 10% over the detector surface area of 14.3 mm / times 14.3mm. Overall, we conclude that the KASINICS optics system satisfies the design requirements for NIR imaging observations.
        4,000원
        1 2 3 4 5