검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 132

        101.
        2013.08 구독 인증기관·개인회원 무료
        이중외팔보 모델은 일반적으로 복합재료의 구조테스트와 접착 접합의 테스트에 많이 쓰인다. 본 연구 에서 쓰인 재료는 알루미늄 합금2014이다. 또한 접착 구조물의 접착 면에서 발생한 에너지 해방율 및 유한요소해석을 통하여 알루미늄의 충격에 대한 기계적 특성을 알고자 하는 것이 목적에 있다. 상단부와 하단부의 접착 부위는 하중 점으로부터 100mm 떨어지도록 예비크랙을 두어 접착을 하도록 설계하였다. 하중은 핀에 Y축 방향으로 작용하였다. 충격속도는 7. 5m/s와 12.5m/s로 가하였다. 충격속도가 12.5m/s 일 때의 에너지 해방율은 약 7500J/m2으로 나왔다. 충격 속도가 빠를수록 하중 핀에 가해지는 하중이 증가된다는 것을 알 수 있었으며, 에너지 해방율도 높게 나타나는 것을 알 수 있었다.
        102.
        2013.08 구독 인증기관·개인회원 무료
        차량용 시트는 쿠션부와 철제 구조물로 되어 있는데 철제 구조물은 프레임, 레일, 리클라이너로 구성된다. 특히 시트의 안정성과 직결된 리클라이너(Seat recliner)부품의 복합 성형제품은 파인블랭킹 제조기술을 활용하여 제작하는 연구가 진행되고 있다. 본 연구에서는 열처리 된 구조용강이 적용된 리클라이너를 CATIA 프로그램을 사용하여 3D 모델링하였으며, 이를 유한요소 해석 프로그램을 사용하여 라운드 리클라이너와 기준의 리클라이너의 강도 해석의 하중전달 경로, 응력 및 변형률을 연구하였다. 따라서 본 연구에서는 라운드 리클라이너와 기준의 리클라이너의 강도 해석의 응력 및 변형률을 비교/분석하였으며 기계적 특성을 파악했다.
        103.
        2013.08 구독 인증기관·개인회원 무료
        본 연구는 알루미늄 폼 복합재료로 접합된 TDCB 모델에 대해 구조적 시뮬레이션 해석을 하였다. 이 해석을 통하여 등가응력, 변형 에너지 및 접착부의 압력에 대한 자료를 얻었다. 또한 실험을 하여 해석 자료에 대한 검증을 하였다. 본 연구의 자료를 통해 알루미늄 폼 재질로 접합된 실제 복합재 구조물에 적용시켜 파괴거동을 분석하고 그 기계적인 특성을 파악할 수 있다.
        104.
        2013.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Aluminum foam has many superb properties such as light weight, impact absorption and thermal resistance by comparing with original metallic materials. Composite materials made of aluminum foam have used at various fields as automotive bumper, shock absorption, vessel and aircraft. But it is inefficient to join aluminum foam with bolt and nut because of the property of light weight. In this study, this approach is investigated by joining aluminum foam with adhesive. Impact fatigue and failure toughness at the commissure of adhesive structure are studied by simulation analysis. This study aims to investigate the shear strength evaluation at shear mode of adhesively bonded joint with double cantilever beam(DCB) made of aluminum foam.
        4,000원
        105.
        2013.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        New material which absorbs impact energy effectively and has excellent mechanical property is developed. The used amount is increased at automobile field day by day. Aluminum foam with various air sell lattices within is one of representative porosity metals which are used at many automobile parts because it has the excellent lightness and impact energy absorption function. For this reason, aluminum foam is used widely as a component among composite materials. This study aims to investigate systematically the mechanical property of foam through computer simulation. In order to obtain the property of aluminum foam, aluminum foam is designed as the dimension of 100mm × 100mm × 25mm and the striker that has the diameter of 12.5mm is supposed to impact aluminum foam with impact energies of 6J, 10J, and 14J. Aluminum foam is not penetrated when striker given by energy of 6J or 10J impacts into it, but aluminum foam is penetrated by striker in case of impact energy of 14J. The result can provide the basic data in order to develop the advanced composite material.
        4,000원
        106.
        2013.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        four kinds of models designed by the basis of British industrial standard and ISO international standard in this study. Energy release rates at mode 1 are investigated by the fatigue analysis of aluminum foam TDCB model bonded with adhesive. These analysis models are compared each other by classifying four models into m values with 2, 2.5, 3 and 3.5. The value of m as the gradient of model is represented with the function of crack length(a) and height of model(h). Through the correlation relation, the fracture behavior of bonded material is analyzed and these analysis results can be applied to composite structures of various areas. Mechanical property and fracture toughness of composite material are also analyzed in this study.
        4,000원
        107.
        2013.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Among the various parts of automobile, automotive seat is the most fundamental item that ride comfort can be evaluated as the part contacted at human body. Dynamic stabilities on 3 kinds of models are analysed according to inside beam configuration of rear seat frame in this study. Model 1 has the basic design of straight beam. Model 2 has the beam that is curved slightly from model 1 configuration and model 3 has honeycomb structure. Total deformations and equivalent stresses are investigated when these models are crushed at side. Total deformations due to frequencies are also obtained and critical frequencies on these frequency responses are investigated. By comparing total deformation configurations of model 1,2 and 3, model 1 and 2 apply the damage to passengers but model 3 absorbs the damage. Model 1, 2 and 3 show total deformations of 482.7, 178.9 and 151.62 mm at the critical frequencies of 180, 200 and 150Hz respectively. Because model 3 does not apply the damage to passengers and the total deformation at critical frequency becomes minimum among three models on frequency response, this model becomes most stable among 3 kinds of models when crushed at side.
        4,000원
        108.
        2013.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This study aims to analyze the structural behavior on TDCB models bonded adhesively with aluminum foam composite. These simulation models are designed on the basis of British industrial and ISO standards. The variable of configuration factor(m) is set up to investigate the fracture toughness of bonded joint due to the volume of material. Equivalent stress, deformation energy, pressure at bonded part, reaction force-crack length, energy release rate-crack length are obtained by this analysis. Through the data of this study, the fracture behavior can be analyzed by applying the practical composite structure bonded with aluminum foam and the mechanical property can be understood.
        4,000원
        109.
        2013.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, the impact properties of aluminum honeycomb core composite are investigated through simulation analysis. The specimens are applied with different impact energies of 50 J, 70 J, and 100 J. The maximum load occurs at 3.7 ms for 50 J, 3.7 ms for 70 J and 2.3 ms for 100 J. The maximum load occurs when the striker is penetrating the upper face sheet in all cases. In case of 50 J impact energy, striker does not penetrate the lower face sheet and honeycomb core sandwich can be stable as the energy of 38 J happens. In case of 70 J impact energy, the striker penetrates into the specimen. The striker then causes the damage to the lower face sheet after penetrating the upper face sheet and the core as the energy of 53 J happens. In case of 100 J impact energy, the striker penetrates through all of the upper face sheet, core and lower face sheet as the energy of 65 J happens. This study can be utilized at the design of aluminum honeycomb core sandwich composite structure by understanding stability through the impact property.
        4,000원
        111.
        2013.02 구독 인증기관 무료, 개인회원 유료
        This study analyzes lifes and damages at automotive tie rod through the structural analyses with fatigue. The structural result of this study can be effectively utilized with the design of automotive tie rod by investigating prevention and durability against its damage.
        4,000원
        112.
        2013.02 구독 인증기관 무료, 개인회원 유료
        In this study, the stability of baby carriage is investigated through fatigue and vibration analyses according to the seat configuration.
        4,300원
        113.
        2013.02 구독 인증기관 무료, 개인회원 유료
        This study analyzes about Bicycle saddle in operation through the analysis of Fatigue life and structural safety, equivalent Stress, maximum deformation. Maximum equivalent stress is analysis applied with force. The structural result of this study can be effectively utilized with the design of Bicycle saddle by investigating prevention and durability against its damage.
        4,900원
        114.
        2012.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Aluminum foam with porous material has the excellent mechanical property of light weight and impact absorption. It is necessary to obtain the information of fracture toughness at the adhesive work by the joint method. This study is investigated by fatigue analysis with DCB(Double Cantilever Beam) specimen models to evaluate the strengths at adhesive joints on the basis of British industrial and ISO international standards. 4 kinds of specimens are modelled by changing the height of specimen and the analysis results are compared with each other. As the height of specimen becomes lower, the displacement on the y direction, load and energy release rates become higher. Through the correlation obtained by this study result, fracture behaviors are examined and mechanical properties can be understood. Aluminum foam material bonded with adhesive can applied to the real composite structure by use of this study result.
        4,000원
        115.
        2012.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Aluminum foam as porous material in wide use has the excellent mechanical and thermal properties. As adhesive process technique is used by bonding such composites as aluminum foam, fracture toughness at adhesive joint is the main point to investigate. In this study, DCB specimens are manufactured to evaluate the strengths at adhesive joints on the basis of British industrial and ISO international standards. Four kinds of specimens are made by changing the height of the specimen and these experimental results are compared with each other. Energy release rates are also calculated at mode I. As the hight of specimen becomes higher, reaction force and energy release rates become higher. Through the correlation obtained by this study result, aluminum foam material bonded with adhesive can be applied to the real composite structure and mechanical property and fracture toughness are analyzed systematically.
        4,000원
        116.
        2012.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Aluminum foam with the property as the excellent impact absorption has been widely used recently. It is necessary to study fracture energy due to fracture toughness by the use of adhesive joint at aluminum foam. This study aims at strength evaluation about adhesive joint on aluminum foam and the fracture of bonded DCB model with this material property is analyzed by simulation. These models are designed by differing in height on the basis of British industrial and ISO standards. As the value of height at model is higher, bonded part is separated to the end. By comparing some analysis results with experimental data, these data could agree with each other. By the verification with experimental results, these all simulation results in this study can be applied on real composite structure with aluminum foam material effectively. The fracture behavior and mechanical property can also be examined by this study.
        4,000원
        119.
        2012.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This study analyzes lifes and damages at two automotive grills in use through the structural analyses with fatigue. As maximum equivalent stress in case of aftermarket grill frame becomes smaller more 15 times than horizontal grill frame, aftermarket grill is shown to be more stable. The lowest damage becomes 2968 in case of ‘SAE bracket history’ with the severest change of load at aftermarket grill. As it becomes smaller more 5 times than horizontal grill frame, aftermarket grill has more durability. Among the cases of nonuniform fatigue loads, ‘Sample history’ with the slowest change of load becomes most unstable in case of horizontal grill frame but ‘SAE bracket history’ with the severest change of load becomes most stable in case of aftermarket grill frame. The structural result of this study can be effectively utilized with the design of automotive grill frame by investigating prevention and durability against its damage.
        4,000원
        120.
        2012.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        As vehicle technology becomes advanced, the vehicle ride quality is improved. Safety of automotive suspension system is influenced directly with quality ride of passenger. This study aims at the improvement of automotive shock absorbers. Static and vibration analyses are analyzed at car cushion buffer with spring force due to the weight movement of vehicle. The maximum equivalent stresses and strains are calculated and six different natural frequencies are applied with each mode of vibration. Maximum deformation vibration value is also derived by the condition of harmonic vibration. As the durability of advanced automotive shock absorber can be improved by applying this study result with the design of car cushion buffer. ride quality gets better and the damage can be prevented.
        4,000원
        6 7