검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 4

        2.
        2023.11 구독 인증기관·개인회원 무료
        Radioactive waste is typically disposed of using standard 200 and 320 L drums based on acceptance criteria. However, there have been no cases evaluating the disposal and suitability of 200 L steel drums for RI waste disposal. There has been a lack of prior assessments regarding the disposal and suitability of 200 L steel drums for the disposal of RI waste. Radioactive waste is transported to disposal facilities after disposal in containers, where the drums are loaded and temporarily stored. Subsequently, after repackaging the disposal drums, the repackaged drums are transported to disposal facilities by vehicle or ship for permanent disposal. Disposal containers can be susceptible to damage due to impacts during transportation, handling, and loading, leading to potential damage to the radiation primer coating during loading. Additionally, disposal containers may be subject to damage from electrochemical corrosion, necessitating the enhancement of corrosion resistance. Metal composite coatings can be employed to enhance both abrasion resistance and corrosion resistance. The application of metal composite coatings to disposal containers can improve the durability and radiation shielding performance of radioactive waste disposal containers. The thickness of radioactive waste disposal containers is determined through radioactive shielding analysis during the design process. The designed disposal containers undergo structural analysis, considering loading conditions based on the disposal environment. This paper focuses on evaluating the structural improvements achieved through the implementation of metal composite coatings with the goal of enhancing corrosion and abrasion resistance.
        3.
        2023.11 구독 인증기관·개인회원 무료
        The development of existing radioactive waste (RI waste) management technologies has been limited to processing techniques for volume reduction. However, this approach has limitations as it does not address issues that compromise the safety of RI waste management, such as the leakage of radioactive liquid, radiation exposure, fire hazards, and off-gas generation. RI waste comes in various forms of radioactive contamination levels, and the sources of waste generation are not fixed, making it challenging to apply conventional decommissioning and disposal techniques from nuclear power plants. This necessitates the development of new disposal facilities suitable for domestic use. Various methods have been considered for the solidification of RI waste, including cement solidification, paraffin solidification, and polymer solidification. Among these, the polymer solidification method is currently regarded as the most suitable material for RI waste immobilization, aiming to overcome the limitations of cement and paraffin solidification methods. Therefore, in this study, a conceptual design for a solidification system using polymer solidification was developed. Taking into account industrial applicability and process costs, a solidification system using epoxy resin was designed. The developed solidification system consists of a pre-treatment system (fine crush), solidification system, cladding system, and packing system. Each process is automated to enhance safety by minimizing user exposure to radioactive waste. The cladding system was designed to minimize defects in the solidified material. Based on the proposed conceptual design in this paper, we plan to proceed with the specific design phase and manufacture performance testing equipment based on the basic design.
        4.
        2011.09 KCI 등재 서비스 종료(열람 제한)
        An environment of world marine port today is rapidly changing. Importance of a hub port is being maximized along with appearance of a large container ship, and Busan port is also growing with the goal as a hub port of Northeast Asia. Busan port currently has competitive power as the 5th top port in the world, but increase rate of transportation quantity, is low compared to Shanghai port in China and other ports in Northeast Asia. For a port to obtain competitiveness, investment on infrastructures of a port is necessary and also it has close relation with an intraregional port logistics industry. However, a port logistics industry in Busan area has a hard time avoiding a small size due to the government support on major companies. Therefore, this study will analyze difficulties of small port logistics companies and the related companies as to vitalize port logistics industry in Busan area in hopes to help vitalizing regional economy.