In this study, the noise reduction effect of the steam vent silencer was investigated by performing a transient flow analysis applying the Loss Model, a porous flow analysis model, and calculating the noise intensity from the pressure fluctuation according to the time change. As a result of flow analysis, it was confirmed that the noise intensity decreased as the number of diffusers and the number of splitters made of foamed aluminum increased. In the case of three-stage diffusers, the noise intensity decreased by up to 33.4 dB when six foamed aluminum with a thickness of 150mm were installed.
In this study, 3D design, vibration analysis and experiment, and feed rate performance test were performed to develop a vibratory bowl feeder for supplying ultra-thin plate parts of less than 50 microns. The natural frequency and resonant frequency of the vibratory bowl feeder were obtained through the vibration analysis and experiment, and it was confirmed that the results of the analysis and experiment agree well. Through the feed rate experiment, it was confirmed that up to 610 ultra-thin parts per minute were fed at 250Hz and a supply voltage of 220V, where the excitation frequency and the resonant frequency match. And through analysis and experimental research, it was confirmed that the development of a vibratory bowl feeder for supplying ultra-thin parts was successful.
This research was conducted for dewatered sludge cake of industrial wastewater treatment, i.e., as the object of inorganic sludge discharged especially in iron & steel manufacturing shop which used Air drying system to reduce water content. That drying system's single-type cyclone separator was confirmed to have significantly lower separation efficiency on the conditions 20μm and below of particular size through computational fluid dynamics(CFD) analysis. However, we found out the primarily advanced value of separation efficiency on dual-type directly connected. Regarding separation efficiency on size of 10μm, the efficiency of a single-type was presented at 51.91%. On the other side, the efficiency of the dual-type was 97.88%. This advanced effect of the dual cyclone separator was checked at a demo facility of air drying equipment designed by 340m3/min of airflow on site.
This thesis relates to developing an index drilling automation system that quickly and efficiently processes a hole in a product by a rotating robot arm and transfer devices. Static structural analysis was performed using the ANSYS Mechanical program to evaluate the structural stability of the system. According to the research, the equivalent stress value is low overall, and the minimum safety factor is 4.42, so it seems structurally safe. This system will significantly help improve productivity through unmanned work as it can control and set the drill and index simultaneously on the control panel in conjunction with the training.
This paper is about structural, and vibration analysis for the development of Index chucks Structural and vibration analyses were performed using the ANSYS Mechanical program to evaluate the Index chuck's structural stability and vibration characteristics. As a analysis result, when the maximum load of 500N was applied to the Index chuck, the safety factors were 2.06, 2.09, and 2.60, respectively, when the thickness was 5mm, and the outer diameters were 70mm, 90mm, and 120mm, respectively. Structurally safe results were obtained. In addition, under load conditions of 300 N or less, structural safety was confirmed if the thickness is 3mm or more.
This study was performed to analyze the effect on driving performance by identifying the flow characteristics of the rear diffuser such as drag coefficient, lift coefficient, velocity vector, velocity streamlines, turbulence kinetic energy and vortex-core region according to the angle of the sedan rear diffuser and the shape of the divider. The angle of the diffuser was analyzed at 2° intervals from 0° to 18°, and the divider was analyzed by changing from one to five. The three-dimensional modeling was performed using CATIA V5 and the vehicle model was selected as a sedan car in the form of an LF Sonata. The CFD analysis was performed in order to identify the flow characteristics of rear diffuser using ANSYS CFX 14.5.7. For each model, the analysis was performed under each condition with speeds of 80km/h, 100km/h, 120km/h, 140km/h. The results of the flow analysis showed that the rear diffuser angle was the best result in driving stability at 6°. The results of the study on the number of dividers showed the best result value in driving stability when the rear diffuser angle was 6° and the divider was 3 and selected as the optimal shape.
There are many disadvantages to existing silencers used in power plants. Recently, high-performance silencers are required in society, so it is necessary to develop silencers accordingly. Therefore, in this study, to develop the flow silencer by taking advantage of the foamed aluminum, the property values such as loss coefficient and porosity were obtained through experiments, based on the Forchheimer's law. CFD analysis was performed by applying a porous modeling technique to foamed aluminum and the results were compared with experimental values. The error rate between the results of the experiment and the flow analysis is within about 2.79%, so the results of the experiment and the analysis agree relatively well. When the foamed aluminum was installed, the flow noise was reduced by about 5.14dB.
This study examines the effects of lightemitting diode (LED) light and temperature on lettuce growth. For plant growth, we used an LED bar composed of red, white and blue LEDs (4:1:2). Six types of cultivation equipment were used to measure the temperature. To compare their effects, the heights of the lettuces and the water temperatures were measured. The results demonstrated that the lettuce growth was optimal at 25ºC.