Springtails (class Collembola) play a crucial role in soil ecosystems. They are commonly used as standard species in soil toxicity assessments. According to the ISO 11267 guidelines established by the International Organization for Standardization (ISO), Allonychiurus kimi uses adult survival and juvenile production as toxicity assessment endpoint. Conventional toxicity assessment methods require manually counting adults and larvae under a microscope after experiments, which is time-consuming and laborintensive. To overcome these limitations, this study developed a model using YOLOv8 to detect and count both adults and juveniles of A. kimi. An AI model was trained using a training dataset and evaluated using a validation dataset. Both training and validation datasets used for AI model were created by picturing plate images that included adults and larvae. Statistical comparison of validation dataset showed no significant difference between manual and automatic counts. Additionally, the model achieved high accuracies (Precision=1.0, Recall=0.95 for adults; Precision=0.95, Recall=0.83 for juveniles). This indicates that the model can successfully detect objects. Additionally, the system can automatically measure body areas of individuals, enabling more detailed assessments related to growth and development. Therefore, this study establishes that AI-based counting methods in toxicity assessments with offer high levels of accuracy and efficiency can effectively replace traditional manual counting methods. This method significantly enhances the efficiency of large-scale toxicity evaluations while reducing researcher workload.
Comparative analysis is a typically useful tool for translating genomic information from one species to another. However, currently available softwares are relatively difficult to directly use for researchers that are not familiar with use of bioinformatic tools. Therefore, we intended to develop a new platforms and/or interface through which one can use in more comfortable way, based on the concept of interactive comparative analysis. Towards this direction, we, firstly, constructed relational database to store the information on abiotic stress genes identified from multiple plant species using various resources, such as the TAIR (http://www.arabidopsis.org), gene expression profiles and relevant literatures, and linked with comparative analysis interface. For purposes of comparative analysis and identification of synteny blocks, cross-species orthologous genes were determined using a combination of tBlastX and BlastP homology searches. We adapted and developed a Circos-like format to present resulting comparative maps. Users can readily choose analysis parameters, for example individual genes and specific chromosomes for chosen species, in the pane of analysis DB, which is useful feature to avoid complexity of comparative genomic analysis. This DB-associated comparative analysis tool, developed in this study, will be able to provide customer-friendly interface for comparative analysis and extend its utility across a broader range of plant genomes.
Comparative analysis is a typically useful tool for translating genomic information from one species to another. However, currently available softwares are relatively difficult to directly use for researchers that are not familiar with use of bioinformatic tools. Therefore, we intended to develop a new platforms and/or interface through which one can use in more comfortable way, based on the concept of interactive comparative analysis. Towards this direction, we, firstly, constructed relational database to store the information on abiotic stress genes identified from multiple plant species using various resources, such as the TAIR (http://www.arabidopsis.org), gene expression profiles and relevant literatures, and linked with comparative analysis interface. For purposes of comparative analysis and identification of synteny blocks, cross-species orthologous genes were determined using a combination of tBlastX and BlastP homology searches. We adapted and developed a Circos-like format to present resulting comparative maps. Users can readily choose analysis parameters, for example individual genes and specific chromosomes for chosen species, in the pane of analysis DB, which is useful feature to avoid complexity of comparative genomic analysis. This DB-associated comparative analysis tool, developed in this study, will be able to provide customer-friendly interface for comparative analysis and extend its utility across a broader range of plant genomes.