The research involves the development of a powder metallurgical route for producing good quality TiAl targets for making physical vapour deposition (PVD) coatings. Mixtures of elemental titanium and aluminium powders were mechanically milled using a novel discus milling technique under various conditions. Hot isotropic pressing (HIP) was then employed for consolidation of the mechanically alloyed powders. A cathodic arc vapour deposition process was applied to produce a TiAlN coating. Microstructural examination was conducted on the target material and PVD coatings, using X-ray diffractometry (XRD), X-ray photoelectron spectrometry (XPS) and scanning electron microscopy (SEM). It has been found that combining mechanical alloying and HIP enable us to produce fairly good quality of TiAl based target. The PVD coatings obtained from the TiAl target showed very high microhardness values.
[ ] composite powders were produced by high energy mechanical milling of a mixture of Al and powders followed by a combustion reaction. The powders were subsequently thermally sprayed on H13 steel substrates. Microstructural examination was conducted on the composite powders and thermally sprayed coatings, using X-ray diffractometry (XRD) and scanning electron microscopy (SEM). The performance of the coatings was evaluated in terms of micro-hardness and thermal fatigue. The thermally sprayed coatings performed very well in the preliminary thermal fatigue tests and showed no wetting tendency to molten aluminum.