The normal feeding approach of goats might be due to their precise anatomical and physiological characteristics of entity, which permit them to be highly selective, to eat legume silages and wild green grass. This review has been designed to consider the grazing behavior, fodder selection, and feed composition of goats. Various herbs and corns consumed by goats have numerous nutritive resources. Based on the general herbaceous intake activities and behavior of goats, they prefer wild grass such as grass grown in the steep hills than soft grass. Because the digestion capacity of cellulose feed has higher digestion level compared to other non-ruminants within rumen and it is advantageous to use wild forest or mountain grass which comprises high proportion of cellulose feed for goat. In South Korea, there are abundant feed resources for goats because of occupying large areas of mountains. Thus, goat production and feeding costs could be reduced if plants are used from the wild forest as a feed for goats relative to grassland grazing. Also, it is expected to contribute in improvement of goat farming with harmonious relationship between the grassland and wild forest while satisfying animal welfare and physiological desires of livestock.
The objectives of this study was to evaluate the degradability and digestibility of crude protein (CP), rumen undegradable protein (RUP), and individual amino acids (AA) on six by-product feedstuffs (BPF) (rice bran, RB; wheat bran, WB; corn gluten feed, CGF; tofu residue, TR; spent mushroom substrate from Pleurotus ostreatus, SMSP; brewers grain, BG) as ruminants feed. Three Hanwoo steers (40 months old, 520 ± 20.20 kg of body weight) fitted with a permanent rumen cannula and T-shaped duodenal cannula were used to examine of the BPF using in situ nylon bag and mobile bag technique. The bran CGF (19.2%) and food-processing residue BG (19.7%) had the highest CP contents than other feeds. The RUP value of bran RB (39.7%) and food-processing residues SMSP (81.1%) were higher than other feeds. The intestinal digestion of CP was higher in bran RB (44.2%) and food-processing residues BG (40.5%) than other feeds. In addition, intestinal digestion of Met was higher in bran RB (55.7%) and food-processing residues BG (44.0%) than other feeds. Overall, these results suggest that RB and BG might be useful as main raw ingredients in feed for ruminants. Our results can be used as baseline data for ruminant ration formulation.
Ursolic acid is a triterpenoid compound present in many plants. This study examined the antimicrobial activity of ursolic acid against mutans streptococci (MS) isolated from the Korean population. The antimicrobial activity was evaluated by the minimum inhibitory concentration (MIC) and time kill curves of MS. The cytotoxicity of ursolic acid against KB cells was tested using an MTT assay. The MIC90 values of ursolic acid for Streptococcus mutans and Streptococcus sobrinus isolated from the Korean population were 2 μg/ml and 4 μg/ml, respectively. Ursolic acid had a bactericidal effect on S. mutans ATCC 25175 T and S. sobrinus ATCC 33478 T at > 2 × MIC (4 μg/ml) and 4 × MIC (8 μg/ml), respectively. Ursolic acid had no cytotoxic effect on KB cells at concentrations at which it exerted antimicrobial effects. The results suggest that ursolic acid can be used in the development of oral hygiene products for the prevention of dental caries.
Human embryonic stem (ES) cells are derived from the inner cell mass of the preimplantation embryo. Human ES cells have the capacity to differentiate into various types of cells in the body. Human ES cells are indefinite source of cells for cell therapy in various degenerative disorders including neuronal disorders. Directed differentiation of human ES cells is a prerequisite for their clinical application. The objective of this study is to develop the culture condition for the derivation of neural precursor cells from human ES cells. Neural precursor cells were derived from human ES cells in a stepwise culture condition. Neural precursor cells in the form of neural rosette structures developed into neurospheres when cultured in suspension. Suspension culture of neurospheres has been maintained over 4 months. Expressions of nestin, soxl, sox2, pax3 and pax6 transcripts were upregulated during differentiation into neural precursor cells by RT-PCR analysis. In contrast, expression of oct4 was dramatically downregulated in neural precursor cells. Immunocytochemical analyses of neural precursor cells demonstrated expression of nestin and SOX1. When induced to differentiate on an adhesive substrate, neuro-spheres were able to differentiate into three lineages of neural systems, including neurons, astrocytes and oligo-dendrocytes. Transcripts of sox1 and pax6 were downregulated during differentiation of neural precursor cells into neurons. In contrast, expression of map2ab was elevated in the differentiated cells, relative to those in neural precursor cells. Neurons derived from neural precursor cells expressed NCAM, Tuj1, MAP2ab, NeuN and NF200 in immunocytochemical analyses. Presence of astrocytes was confirmed by expression of GFAP immuno-cytochemically. Oligodendrocytes were also observed by positive immuno-reactivities against oligodendrocyte marker O1. Results of this study demonstrate that a stepwise culture condition is developed for the derivation of neural precursor cells from human ES cells.
Background : Ginseng, one of most famous traditional oriental medicines, has been known for a number of pharmacological properties including anti-tumor, anti-diabetic, anti-fatigue, anti-stress, anti-oxidative, and anti-aging effects. 20(S)-Protopanaxadiol (PPD), a intestinal metabolite of ginsenosides, is one of the active ingredients in ginseng. In this study, we investigated the synergistic anticancer effect of 20(S)-PPD and temozolomide (TMZ) and the mechanism of 20(S)-PPD on glioblastoma cells. Methods and Results : We examined cell viability and the morphological changes of C6 cells after treatment of 20(S)-PPD and TMZ. 20(S)-PPD showed a potent antiproliferative activity against C6 cells by triggering apoptosis. 20(S)-PPD-induced apoptosis was characterized by a dose-dependent mitochondrial damage. 20(S)-PPD and TMZ had a synergistic effect in increasing mitochondrial damage via caspase 3 activation. Conclusion : These results revealed an unexpected mechanism of 20(S)-PPD and TMZ, triggering a mitochondrial-mediated apoptosis in C6 cells. Our findings encourage further studies of 20(S)-PPD as a promising chemopreventive agent against glioblastoma.
May-Thurner syndrome is associated with deep vein thrombosis resulting from chronic compression of the iliac vein against the lumbar vertebrae caused by the overlying common iliac artery. Stent insertion into the compressed lesion is used in treatment of May-Thurner syndrome. Various complications can occur during angioplasty while using a stent. Among these complications, shrinkage of the vein below the stent, a rare complication, was observed in our hospital during treatment of a patient with May-Thurner syndrome. Different complications can occur when venous angioplasty is performed, unlike that when arterial angioplasty is performed.