It is very important to assure the seismic performance of equipment as well as building structures in seismic design of nuclear power plant(NPP). Seismically isolated structures may be reviewed mainly on the horizontal seismic responses. Considering the equipment installed in the NPP, the vertical earthquake responses of the structure also should be reviewed. This study has investigated the vertical seismic demand of seismically isolated structure by lead rubber bearings(LRBs). For the numerical evaluation of seismic demand of the base isolated NPP, the Korean standard nuclear power plant (APR1400) is modeled as 4 different models, which are supported by LRBs to have 4 different horizontal target periods. Two real earthquake records and artificially generated input motions have been used as inputs for earthquake analyses. For the study, the vertical floor response spectra(FRS) were generated at the major points of the structure. As a results, the vertical seismic responses of horizontally isolated structure have largely increased due to flexibility of elastomeric isolator. The vertical stiffness of the bearings are more carefully considered in the seismic design of the base-isolated NPPs which have the various equipment inside.
Failure risk investigation of any structure in a seismic zone can be done by the seismic probabilistic risk assessment (SPRA), which became a very attractive area of research in terms of safety measurement. This paper introduces such kind of concept to identify which magnitude in a specific seismic zone will contribute more vulnerable failure point in a structure. Here, for implement this idea a case study on a concrete gravity dam has been carried out. In order to make a correlation between the magnitude and failure risk contribution based on different damage stage, a combination of seismic hazard analysis and the probability of structural collapse is adopted. Therefore, the deaggregation of the mean annual frequency of failure risk by magnitude is used in this study to quantify four different limit stages of failure identification criteria. Consequently, from analyzing the result, in case of concrete gravity dam, this deaggregation approach shows the tensile crack in the base looks more vulnerable damage stage for the specific seismic zone.
This paper concern the performance of tuned mass damper (TMD) and dynamic behaviour of TMD controlled structure considering constitutive material model. A three-storied reinforced concrete frame is modelled using OpenSees for this study. Considering the non-linear materials model, the performance of the TMD not only rely on the mass, stiffness and damping of the system but also on the parameter to be controlled by TMD and the input ground motion types. For this reason in this study some practical, sine sweep and damped sine sweep are considered as input excitation to the evaluate exact dynamic behaviour of TMD controlled structure.
All over the world, concrete gravity dams have to withstand lots of environmental hazards and time-varying external loading during an earthquake. Therefore, the risk assessment of this structure with time may become an important study for the dam structure, which is related to the chemo-mechanical effect on the aging concrete. The focusing point of this study is to propose an earthquake assessment procedure to determine the failure probability with time of any concrete gravity dam for the future if we consider the material deterioration. This material decay is mainly associated with the modulus of elasticity of the concrete and it is explained briefly in the manuscript.
The earthquake risk prediction for dam structure has been considered as an important analysis. The dam has to interact with water in its lifetime, which maybe induces the chemo-mechanical phenomenon on the aging concrete and damage the capacity of the structure. The main aim of this research is to suggest a procedure to predict the operant condition of the dam based on Cumulative Absolute Velocity (CAV) values after some decades. CAV is a method ordinarily used in Nuclear Power Plant (NPP) fields, but in case of a concrete gravity dam, it will be the new addition along with the aging effect of concrete material.
An approach is presented for evaluating the vulnerability of electric cabinet in nuclear power plants. The method is based on the lognormal approach, including the maximum likelihood estimation and linear regression to establish the fragility curves. These procedures are applied for a cabinet considering various boundary conditions, which are expressed by restrained and anchored models at the base. The cabinet models have been built and verified by using the system identification technique. The results show that the fragility curves obtained for the anchored model are found to be closer to each other, compared to the fragility curves for the restrained model.
Deterministic seismic analysis of cabinet facility does not reflect the real behavior of the system with the uncertainties of material parameters. This paper investigates the effects of uncertain properties in the context of random field theory for the stochastic dynamic response of cabinet. The influences of different decomposition methods (i.e. Cholesky, Eigen, and modified Cholesky) with various correlation lengths of the spatial material distribution are explored. The responses are compared to the case where no variation is applied in the properties of the model.
In spite of bulk literature about the tuning of TMD, the effectiveness of TMD in reducing the seismic response of engineering structures is still in a row. This paper deals with the optimum tuning parameters of a passive TMD and simulated on MATLAB with a ten-story numerical shear building. A weighted multi-objective optimization method based on computer experiment consisting of coupled with central composite design(CCD) central composite design and response surface methodology(RSM) was applied to find out the optimum tuning parameters of TMD. After the optimization, the so-conceived TMD turns out to be optimal with respect to the specific seismic event, hence allowing for an optimum reduction in seismic response. The method was employed on above structure by assuming first the El Centro seismic input as a sort of benchmark excitation, and then additional recent strong-motion earthquakes. It is found that the RSM based weighted multi-objective optimized damper improves frequency responses and root mean square displacements of the structure without TMD by 31.6% and 82.3% under El Centro earthquake, respectively, and has an equal or higher performance than the conventionally designed dampers with respect to frequency responses and root mean square displacements and when applied to earthquakes.
This study is to evaluate the seismic demand of reinforced concrete structure considering the incident angle of the ground motions. For this purpose, a three-story structure is numerically analyzed under the three ground motion records through a multi-component incremental dynamic analysis (MIDA). The MIDA, an implementation of Incremental dynamic analysis, investigates two components of seismic excitation in which all accelerations are scaled to spectral accelerations at the fundamental natural periods of the buildings. The obtained results indicate the influence of the incident angle should be considered in the assessment response of structures. Maximum inter-story drift of structure will behave in the elastic or inelastic range depending on the variable incident angle
This study focus on Perimeter Concrete Wall Dampers (PCWD). PCWD can achieve required large mass ratio without additional mass. This system also can control multimode vibration. Suitable location for the installation of PCWD and their tuning frequencies are selected based on modal parameters of the uncontrolled structure respectively. In addition to the numerical simulation, an eleven story is modeled using SAP2000. The proposed system is greatly reducing seismic response of main structure.
Tuned Mass Damper (TMD) is a prominent mean of controlling structural vibration. Typically the TMDs are installed at the top of the structure. In this study, the effectiveness of the multiple tuned mass dampers (MTMD) distributed along with the height of structure is investigated for seismic loading. A ten storey building with lateral degree of freedom is modeled with distributed tuned mass dampers in the platform of MatLab R2010a. Though the first mode of a MDOF system dominates in response of the structure, it is also observed that the other mode can also have a significant role in the response reduction. Suitable location for the installation of the TMDs and there tuning frequencies are selected based on the mode shape and frequencies of the uncontrolled structure respectively. It is observed that distributed TMD is more effective than Single TMD and Multiple TMD installed at top of the structure in response reduction.
The difference in phase and amplitude of ground motions recorded in different locations is generally known as spatial variation of seismic ground motions. This study focuses on the effects of spatial variation of earthquake ground motion on responses of adjacent buildings. The adjacent frame buildings are modeled considering soil-structure interaction (SSI) so that all the buildings can have interaction with each other under non-uniform ground motions. Based on Fast Fourier Transformation, spatially correlated non-uniform ground motions are generated compatible with known spectrum density function at different locations. Numerical analyses are carried out and the results are presented in terms of related parameters affecting the structural response using three different types of soil site classes. The results show that the effects of ground motion spatial variation are different for different site classes. The effect is more significant on rock site rather than clay site.
This paper presents the finite element (FE) response sensitivity and reliability analyses considering smooth constitutive material models. A reinforced concrete (RC) frame is modeled for FE sensitivity analysis followed by direct differentiation method (DDM) under both static and dynamic load cases. Later, the reliability analysis is performed to predict the seismic behavior of the frame. Displacement sensitivity discontinuities are observed along the pseudo-time axis using non-smooth reinforced steel model under quasi-static loading. However, the smooth steel material shows continuity in response sensitivity at elastic to plastic transition points. The normalized sensitivity results are also used to measure the relative importance of the material parameters on the structural responses. In FE reliability analysis, the influence of smoothness behavior of reinforced steel is carefully noticed. Cumulative distribution function (CDF) curves have shown minor change of failure probabilities due to the smoothness effect.