This study aims to develop a deep learning model to monitor rice serving amounts in institutional foodservice, enhancing personalized nutrition management. The goal is to identify the best convolutional neural network (CNN) for detecting rice quantities on serving trays, addressing balanced dietary intake challenges. Both a vanilla CNN and 12 pre-trained CNNs were tested, using features extracted from images of varying rice quantities on white trays. Configurations included optimizers, image generation, dropout, feature extraction, and fine-tuning, with top-1 validation accuracy as the evaluation metric. The vanilla CNN achieved 60% top-1 validation accuracy, while pre-trained CNNs significantly improved performance, reaching up to 90% accuracy. MobileNetV2, suitable for mobile devices, achieved a minimum 76% accuracy. These results suggest the model can effectively monitor rice servings, with potential for improvement through ongoing data collection and training. This development represents a significant advancement in personalized nutrition management, with high validation accuracy indicating its potential utility in dietary management. Continuous improvement based on expanding datasets promises enhanced precision and reliability, contributing to better health outcomes.
Subgenus Bothynoptera Schaum, 1863 of the genus Parena is mainly found in Oriental region. Despite this widespread distribution, species of the subgenus Bothynoptera are poorly known in Korea. While a total of 14 species have been recorded worldwide, only 3 species have been recorded in Korea. In this study, as a revisional work of Korean known species, a pictorial key and photographs of habitus and male genitalia for each species are provided, with a newly recorded species in Korea.
Currently, 12 subspecies of Coptolabrus smaragdinus have been recorded in Korea, of which 7 subspecies are listed in South Korea. C. smaragdinus has limited movement due to degenerated hindwings, resulting in high intraspecific diversity due to geographic isolation. Previous studies have been mainly classified based on external characters or genitalia structure, but the differences between subspecies are very ambiguous. In this study, we aimed to more clearly distinguish at the subspecific classification level, by examining the male aedeagal and inflated endophallus. Additionally, we provide photos of adult, endophallus and the process of endophallus inflation.
The genus Bembidion is a prominent terrestrial group found in various regions around the world, encompassing a large number of species. Species of this genus have a reduced apical palpomere, as do all members of the tribe Bembidiini. This study reviews four species belonging to the subgenus Plataphus, which is included within the genus Bembidion. Descriptions and photos of adults are provided.
The continuous use of pesticides with the same mode of action has lead to the development of insecticide resistance in the target pests. Establishing pesticide resistance management methods and effective control strategies for these pests has become an important target. Bemisia tabaci, a representative pest of greenhouse, directly affects the growth of crops at all stages of its development except eggs. It also causes indirect damage by secreting honeydew that eventually promotes sooty mold in leaves and fruits. In this study, eight insecticides with different mechanisms of action (Flonicamid, Fluxametamide, Spinetoram, Cyantraniliprole, Dinotefuran, Pyridaben, Milbemectin and Pyriproxyfen), and registered for use against cucumber B. tabaci were selected and tested for insecticide resistance. The tested populations of B. tabaci were collected from greenhouse cucumber cultivations in 12 domestic regions. The results were presented as RR (Resistance ratios), and CEI (Control efficacy index) values.
The rate of resistant pest emergence has accelerated due to the continuous use of pesticides. Therefore, it is important to formulate insecticide resistance management measures and effective control methods for pest. Bemisia tabaci, a greenhouse pest, causes direct damage to crops such as growth inhibition and leaf discoloration at all developmental stages except for eggs. It also indirectly damages plants by secreting honeydew, which covers surrounding leaves and fruits, leading to sooty mold development. In this study, eight insecticides with high usage rates, categorized by their mode of action, were selected. Samples of Bemisia tabaci were collected from six regions, and resistance analysis were conducted. The results showed that Flonicamid exhibited a resistance ratio of 8.91 in Sejong, while Pyriproxyfen showed a high resistance ratio of 63.56 in Gunwi. Fluxametamide, Spinetoram, Cyantraniliprole, Dinotefuran, Pyridaben, and Milbemectin displayed resistance ratio ranging from 0.02 to 1.14 in most regions, except for Flonicamid and Pyriproxyfen.
This study was designed to evaluate antihyperglycemic and antihyperlipidemic effects of ethanol extracts of Taraxacum mongolicum (T.m.) on streptozotocin (STZ)-induced diabetic rats. Sprague-Dawley rats were randomly assigned to five groups: normal (NC), STZ-control (DC), and three experimental groups. Diabetes was induced in Sprague-Dawley rats with a single intravenous injection [45 mg/kg body weight (b.w.)] of STZ. An ethanol extract of T.m. was orally given to diabetic rats for 14 days. Three experimental groups were additionally treated with T.m. extract at doses of 1 g/kg b.w./day for T.m.-1, 2 g/kg b.w./day for T.m.-2, and 3 g/kg b.w./day for T.m.-3. Oral administration of T.m.-2 significantly increased their body weights. T.m.-1 and T.m.-2 significantly decreased aspartate aminotransferase (AST) levels than DC. T.m.-1 and T.m.-2 group significantly decreased blood glucose levels. Total cholesterol, triglycerides, and free fatty acids were significantly decreased whereas high-density lipoprotein cholesterol was significantly increased in groups treated with T.m. extract than those in the DC group. These results support the fact that administration of T.m. extract can reduce hyperglycemia and hyperlipidemia risk in diabetic rats.
본 연구는 환경측정용 센서 위치에 따른 온실 환경의 공간· 수직적 특성을 조사하고 온실 종류에 따른 온도, 광도 및 CO2 농도 간의 상관관계를 구명하고자 수행하였다. 벤로형 온실의 공간적인 5지점을 선정한 후 각 지점에서 대표적 작물의 수 직적 높이 4지점과 지면부, 지붕 공간에 온도, 상대습도, CO2, 엽온 및 광센서를 설치하였다. 벤로형 온실과 반밀폐형 온실 에서 온도, 광도 및 CO2 농도 변화의 관계성을 Curve Expert Professional 프로그램을 이용하여 비교하였다. 벤로형 온실 의 공간적 위치에 따른 편차는 CO2 농도가 다른 요인보다 큰 것으로 나타났다. CO2 농도는 평균 465-761μmol·mol-1 범 위였고, 편차가 가장 큰 시간대는 오후 5시였으며, 최고 농도 는 액화 탄산가스 공급장치의 메인 배관(50∅)과 가까운 위치 인 중앙 후부(Middle End, 4ME)에서 646μmol·mol-1, 최저 농도는 좌측 중앙(Left Middle, 5LM)에서 436μmol·mol-1이 었다. 수직적 위치에 따른 편차는 온도와 상대습도가 다른 요 인보다 큰 것으로 나타났다. 평균 기온의 편차가 가장 큰 시간 대는 오후 2시대이며, 최고 기온은 작물 위 공기층(Upper Air, UA)에서 26.51℃, 최저 기온은 작물의 하단부(Lower Canopy, LC)에서 25.62℃였다. 평균 상대습도의 편차가 가장 큰 시간 대는 오후 1시대로 나타났으며, 최고 습도는 LC에서 76.90%, 최저 습도는 UA에서 71.74%이다. 각 시간대에 평균 CO2 농 도가 가장 높은 수직적 위치는 지붕 공간 공기층(Roof Air, RF)과 시설 내 지면(Ground, GD)이었다. 온실 내 온도, 광도 및 CO2 농도의 관계성은 반밀폐형 온실의 경우 결정계수(r2) 가 0.07, 벤로형 온실은 0.66이었다. 결과를 종합하여 볼 때, 온실 내 CO2 농도는 공간적 분포, 온도와 습도는 작물의 수직 적 분포 차이를 측정하여 분석할 필요가 있고 환기율이 낮은 반밀폐형 온실의 경우 목표 CO2 시비 농도가 일반 온실과 다 르게 설정해야 할 것으로 판단된다.
The purpose of this study was to examine the effects of Atractylodes lancea (A.l.) in a dose-dependent manner on lipid levels and plasma glucose in diabetic rats induced with streptozotocin (STZ). The Sprague-Dawley rats were randomly classified into five groups: normal, STZ-control and three experimental groups [A.l.-1, diabetic treated with ethanolic extract of A.l. (1 g/kg b.w.), A.l.-2, diabetic administered with ethanolic extract of A.l. (2 g/kg b.w.), and A.l.-3, diabetic administered with ethanolic extract of A.l. (3 g/kg b.w.)]. The normal and STZ-control group were fed an AIN-93 diet and the three experimental groups were administered with A.l. extract at doses of 1, 2, and 3 g/kg b.w./day, respectively, for 14 days. The plasma glucose levels in all the experimental groups were significantly lower than the STZ-control group after 14 days of treatment. The total cholesterol of the A.l.-3 and triglyceride levels, atherogenic index (AI) of all three experimental groups were significantly lower than the STZ-control group. The ALT and AST activities at A.l.-2, A.l.-3 were significantly lower than the STZ-control group. This result that demonstrate the administration of Atractylodes lancea can reduce hyperglycemia and hyperlipidemia risk in diabetic rats.