This study was performed to analyze a saltiness enhancement at the same salt content through multiple emulsion. We compared the samples with different conditions to determine the optimum stability conditions of water-in-oil through layer separation rate, microscopic observation and size analysis. Four electrolytes such as NaCl, KCl, MgCl2, and CaCl2 were used and agar contents ranged from 0 to 1% were experimented at different volume ratios including 5:5, 4:6, 3:7, 2:8, and 1:9 of water and oil. As a result of this study, the droplet size according to the electrolyte type did not show significant differences (p<0.05). Therefore, KCl was used to facilitate in-body excretion of NaCl in the outer water phase, and corn oil containing 8%(w/w) polyglycerol polyricinoleate was used as oil phase. When the volume ratio of water and oil was 3:7, 2:8, and 1:9, the layer separation rate was relatively slow and droplet size was also small. It reveals that the particle size becomes smaller as the water volume ratio decreases. However, considering the amount of water to be stored and eluted on the inner water, appropriate volume ratio of water and oil should be adopted to 3: 7. At Microscopic observation depending on agar concentrations, small particle size appeared at 0.2% and 0.4% agars. When the water and oil ratio was fixed at 3:7, the particle size was measured at 0.2% and 0.4% agar using a zeta sizer. In conclusion, the droplet size of 0.2% agar was smaller than 0.4%. Therefore, the most stable water-in-oil emulsion was obtained with 0.2% agar, when water to oil ratio was 3:7.
Probiotics are defined as advantageous microorganisms to human when they are ingested. However, without any protection, the viability of microbes and their adhesive ability to surface of colon decreases through acidic condition such as stomach and intestines. Therefore, many studies have been conducted to figure out to enhance not only the viability of probiotics, but also its adhesion for increasing effect of probiotics. In this study, extrusion method was conducted to encapsulate Enterococcus faecium. E. faecium-alginate solution was injected to CaCl2 solution with regular side air injection. To prevent coagulation of beads, stirring was conducted in CaCl2 solution and encapsulated alginate-Ca2+ microspheres were produced. For optimal encapsulation condition, air pressure was 100 mbar, flow rate of E. faecium solution was 0.02 ml/h and stirring rate was 200 rpm. For mucoadhesive ability, Monolayer of HT-29 cells used as a colon cell and encapsulated cells were inoculated and incubated in 37℃, 5% CO2/95% air atmosphere for 1 h. Encapsulation efficiency of the encapsulation method used in this study was 98.2%. For mucoadhesive test, the concentration of inoculated E. faecium was 9.9×108 CFU/ml and the concentration of adhered E. faecium was 1.6×106 CFU/ml. In conclusion, encapsulation efficiency of extrusion method was high enough to be accepted for this study, however, alginate-Ca2+ microspheres revealed lower adhesive ability compared to expectation. Therefore, it needs further studies to increase adhesive ability with other polymers.
Salt is generally used for food seasonings and preservations as a common ingredient. However, excess salt intake has generated health issues such as high blood pressure, osteoporosis, stroke, and heart diseases. Recently, desires and interests of low-salt cooking have been increased among people who want healthy diets. The aim of study was to compare the physicochemical characteristics of a fermented squid sauce added with vitamin C and commercial low-salt soy sauces. Thawed and crushed squids were fermented until the solid squid became liquid at 25°C with an addition of 5% (g/g) vitamin C. Then, fermented squid sauce was heated at 100°C for 30 min and filtered. All samples were measured in multiple aspects of amino acid nitrogen, salt, sugar and water content, pH, chromaticity and brown color, and sensory test. In the results, color values showed no significantly difference between all the samples (p>0.05). Water content value of the fermented squid sauce was the highest among samples. Brown color, salt contents and sugar contents of the fermented squid sauce were significantly different than other low salt soy sauces with an exception of the sauce made with functional salt. These results showed a similar tendency as those of sensory evaluation. As conclusion, the possibility of fermented squid sauce added with vitamin C showed a possibility as a candidate of low-salt soy sauce.
In this study, we investigated the change of physical properties associated with the temperature of vegetable mixed oil and fat in order to produce vegetable oil and fat suitable for plant meat production. The canola oil and coconut oil were mixed at various weight ratios, and the phase change temperatures by the ratio of two oils were measured using the differential scanning calorimetry (DSC). Storage modulus (G'), loss modulus (G") and viscosity were measured using a rheometer at 20-40°C and 0.4 Hz-100 Hz. Storage modulus (G') at constant frequency (10 Hz) was measured in a continuous section of 10-50°C. As the coconut oil content increased, the peak of the melting point moved to the lower side. The viscosity was higher in order of canola oil, mixed oil, and coconut oil, and the viscosity showed a tendency to decrease as the temperature increased. In the liquid state, it showed a tendency to increase after the value of storage modulus (G') and loss modulus (G") decreased from 0.634 Hz-1 Hz. The conversion time point of storage modulus (G') of continuous temperature change is consistent with the melting point temperature of DSC, as the passed start at 10°C, storage modulus (G') increased with an exception of canola oil. Using these results, we will pursue to produce a mixed plant oil applicable to the production of vegetable meat.