Since Japonica rice is recognized as the premium rice in some subtropical region such as Philippines, the development of new cultivar adaptable in subtropical region has been conducting. However typical Japonica rice show earlier flowering in subtropical region due to the short day length and high temperature conditions. In such a condition, it is difficult to secure enough yields. Therefore it is need that selection of Japonica cultivar showing suitable heading characters in subtropical region. Here we try to check the basic vegetative phase and heading sensitivity on temperature condition using 37 kinds of Korean cultivars. BVP is between 14 to 39 days and 37% of cultivar had basic vegetative phase between 26 to 30 days. When temperature became lower on sensitive and reproductive stage, heading was more delayed. However the 24oC condition showed the greatest impact on heading delay among temperature condition. Among cultivars, 56% of cultivars have basic vegetative phase over 25days.We checked temperature effect on heading especially sensitivity stage in those materials. Joun, Manho, Joan and Cheonga showed stable heading date under different temperature conditions. With this data, we suggest that Joun, Manho, Joan and Cheonga could be a good cultivar in subtropical region in heading characters.
This study was conducted to clarify the effect of high temperature during winter period(autumn sowing) and spring sowing on yield, quality and growth and development in barley. The varieties used for the experiments were heenchalssalbori and keunalbori 1 having a strong spring habit characteristics. In spring sowing treatment, spikelet differentiation was proceeded rapidly and tillering was proceeded slowly compared to the development stage, because the barley sowed at spring is cultivated in high temperature and long day conditions from sowing to spikelet differentiation stage compared with autumn sowing(control). And in high temperature treatment during winter period, like spring sowing, tillering was inhibited compared to the development stage. The number of grain per panicle and the period required to heading stage from spikelet differentiation were reduced largely at spring sowing, because spring sowing treatment was conducted in high temperature and long day condition compared with autumn sowing and high temperature treatment during the period from spikelet differentiation to heading stage. Meanwhile in spring sowing treatment, average temperature during ripening stage was higher than the autumn sowing and high temperature during winter, because heading stage was so late. After all, starch, amylose content and grain weight were reduced while protein content was relatively increased in spring sowing treatment due to difference of average temperature of ripening stage. These changes affected the decrease of viscosity of peak, trough, breakdown and the increase of setback viscosity
We investigated the changes in the physicochemical properties of wheat grains during ripening stage to determine the effect of the rise in average temperature on that of wheat grains. The treated average temperatures were 18.3°C(control), 19.9°C(1.6°C increase), 21.5°C(3.2°C increase) in artificial climate room from heading time to harvest. Results showed that the ripening period from heading to maturity tended to be shorter during higher temperature treatment condition. The 1,000-grain weight, grain width, number of florets per spike, and number of grains per spike decreased as the ripening period was shortened. Gelatinization properties were affected by high temperature due to the reduction of starch and amylose contents. As the grain filling period was shortened by high temperature treatments, the crude protein content increased. As the grain filling period was shortened by 6 days, the starch and amylose contents decreased by 10.8% and 5.4%, respectively. However, the crude protein content increased by 1.7% in such a condition. Starch content showed positive correlations between amylose and breakdown. Meanwhile, it showed negative correlations between electric conductivity of leaching water from seeds, crude protein content, peak viscosity, trough viscosity, final viscosity, and setback.
We investigate the change of leaf chlorophyll content according to iron content in brown rice when cultivated on the iron limited solid MS medium. By cultivating wild-type and transgenic brown rice in a solid MS medium, we confirmed that iron deficiency chlorosis did not occur in MS media which were contained over 20% of iron content compared to normal MS condition. After selecting twenty kinds of Korean rice varieties, those brown rice were cultivated in solid MS media which were contained from 0 to 15% of iron content compared to normal MS condition then the leaf chlorophyll content was measured. The leaf chlorophyll content was changed according to iron content in brown rice when cultivated in solid MS medium which was contained 0 and 5% of iron content,. There was a strong correlation between iron content in brown rice and leaf chlorophyll content cultivated in solid MS medium with 5% of Fe content. Therefore we expect that analysis of leaf chlorophyll content after cultivated on MS medium with 5% iron content compared to normal MS media condition will be more simple and effective method to screening high iron content brown rice without measurement of iron content.
This experiment was conducted to clarify the effect of the high temperature on physicochemical properties of barley kernels during ripening stage. High temperature treatment was lasted from each 10, 17 and 24 days after heading(DAH) until the harvest time at 21oC, 24oC, 27oC in artificial climate room. The results showed that ripening period from heading to maturity was tend to be shorter at higher temperature treatment condition and at longer duration treatment condition. and 1000-grain weight was decreased as the ripening period shortened. Furthermore, gelatinization properties was changed by high temperature due to the reduction of starch and amylose contents. As the shortening of grain filling period by a high temperature treatment, the protein content was increased. In the 10 DAH at 27oC treatment, the grain filling period was shortened by 9 days. The starch contents was reduced by 5.7 %, and the protein content was increased by 5.6 % in a such condition. Protein contents was showed negative correlations with amylose, starch contents and gelatinization properties, respectively. Starch contents, however, showed positive correlations with amlyose content and gelatinization properties.
Limonium tetragonum is a halophyte grown naturally in the coastal region in South Korea. This study was conducted to investigate the effects of salt concentrations on seed germination, seedling growth, and antioxidant capacity of L. tetragonum. Seeds were collected from naturally grown plants of L. tetragonum and those at full maturity were used in this experiment. All experiments were performed at 0%, 0.5%, 1.0%, or 2.0% of salt concentrations. Seed germination rate was highest as 86% at 20℃ and followed as higher in order of 25℃, 30℃ and 15℃. The germination rate was about 80% at 0% or 0.5% of salt concentration, but it was very low at the salt concentrations higher than 1%. Growth of L. tetragonum seedlings showed no difference in Hoagland solution containing NaCl in the range of 0% to 1.0% and seedlings survived at 2.0% of NaCl concentration. As the salt concentration increased, the content of Na+ in the shoot increased, but that of K+, Ca++, or Mg++ decreased. The antioxidant activity and the content of total polyphenol and total flavonoid in the shoot were similar at 0% and 0.5% of NaCl and were highest at 2.0% of NaCl concentration. In conclusion, performance of seed germination and plant growth of L. tetragonum was highest at 0% and 0.5% of NaCl concentration, and showed no difference in antioxidant activity, total polyphenol contents, and total flavonoid contents at the same salt concentrations.
This experiment was conducted to evaluate the effects of high temperature on the stem, leaf and grain of barley during the ripening period and to provide information for the development of high-temperature cultivation techniques and adaptive varieties. We used an artificial climate control facility, to provide a temperature 3℃ higher than the normal average temperature during the ripening stage. Although the maximum rate of starch synthesis was increased at high temperature by approximately 11%, the starch content was decreased, because the period of starch synthesis ended 4 days earlier. As in the case of starch synthesis, the expression of genes related to starch synthesis was increased at the early ripening stage in the high temperature treatment, however, the duration of expression tended to decrease rapidly. Furthermore, the partitioning rate of assimilation products in the panicle increased to a greater extent in the high temperature treatment than in the control. In contrast, for the stem and leaf, the partitioning rate of assimilation products decreased more rapidly in the high temperature treatment than in the control. On the basis of these results, it can be considered that the translocation rate of assimilation products increased to a greater extent in the high temperature treatment than in the control at the early ripening stage. These results indicate that the decrease in grain weight at high temperature during the ripening stage is attributable to an increase in the speed of starch synthesis at high temperature, but the increase in ripening speed does not compensate for the shortening of the ripening period. Finally to develop varieties and cultivation techniques suited to high temperature, we need to focus on physiological characteristics related to the duration of starch synthesis.
The increase in the frequency of occurrence of abnormal weather could include severe rainfall, which could cause rice submergence during the ripening stage. This experiment was conducted to clarify the effects of submergence during the ripening period on yield and quality of rice. The flooding treatment was conducted at 7 and 14 days after heading. Flooding conditions were created with two conditions, flag leaf exposed and overhead flooding, and each condition was divided into two conditions according to water quality—clear and muddy. Although the yield decrease was more severe at 7 days after heading because of the decrease in the ripening ratio, the head rice ratio was more affected at 14 days after heading because of the increase in the chalky kernel ratio. The maximum quantum yield (Fv/Fm), which indicates the photosynthetic efficiency, did not differ before and after the flooding treatment until flooding continued for 4 days. In addition, stem elongation occurred because of flooding as an avoidance mechanism in japonica rice. This phenomenon was expected to decrease the supply of assimilation products to the spikelet (sink). Overall, it was suggested that additional experiments should be conducted examining the change in the starch synthesis mechanism and transfer of assimilate products resulting from submergence, for development of cultivation techniques corresponding to submergence and breeding of varieties with submergence tolerance characteristics.
Heading time is important element for yield and quality in crops. Among day length and temperature which influence on heading, temperature effect has not been investigated well. To investigate temperature effect on heading, heading date and plant growth characters were checked under the low and high temperature conditions in short day length. Analyzing heading date of six Korean varieties under the high and low temperature condition, heading date of varieties were delayed under low temperature. In the low temperature condition, dry weight and area of leaf were reduced. Varieties showing more delay of heading under low temperature also showed more reduction in leaf area. After selecting three varieties showing significant difference in leaf growth and heading date under different temperature conditions, nutrient contents of plant were analyzed. Nitrogen content was reduced in leaf and shoot under the low temperature condition. OsNRT2.3, nitrate transporter, was significantly down regulated in varieties showing more heading delay. Available phosphate content was decreased in leaf, but increased in shoot due to reduction of phosphate mobility. OsPT1, phosphate transporter regulating phosphate uptake, was more down regulated in varieties showing more heading delay. OsPT6, phosphate transporter regulating phosphate transport in plant, was also significantly down regulated in those varieties. With these data, we expected that active nitrogen and available phosphate uptake and transport in plant would increase leaf growth then might reduce heading delay under the low temperature condition.
Even though phosphorus (P) is essential element for plant growth and development, it is not enough for crop production in soil. To breed more P deficient tolerance rice, screening and selection in rice population is needed. We tried to develop more simple and rough screening method for breeding of P deficient tolerance rice. In P deficient condition, tiller number was dramatically decreased among yield components in rice. Though this result, we confirmed tiller number could be the best marker in screening of P deficient tolerance rice. 480 rice genetic resources were cultivated in rice bed tray filled with P deficient soil for four weeks and each dry weight was measured. Among them, the 55 kinds of genetic resource were selected then cultivated in paddy field with 3 fertilizer conditions. Plant dry weight and tiller number in ripening stage were shown significant difference according to P condition. Plant dry weight and tiller number in ripening stage was highly correlated especially in P deficient condition. Furthermore, the tiller number in ripening stage and plant dry weight in rough screening were shown high degree correlation. Though these results, we might expect measuring of plant dry weight after cultivation in rice bed tray filled with P deficient soil could be a simple and effective screening method in selection of P deficient tolerance rice.