The domestic Pressurized Heavy Water Reactor (PWHR) nuclear power plant, Wolsong Unit 1, was permanently shut down on December 24, 2019. However, research on decommissioning has mainly focused on Pressurized Water Reactors (PWRs), with a notable absence of both domestic and international experience in the decommissioning of PHWRs. If proper business management such as radiation safety and waste is not performed, it can lead to increased business risks and costs in decommissioning. Therefore, the assessment of waste volume and cost, which provide fundamental data for the nuclear decommissioning process, is a crucial technical requirement before initiating the actual decommissioning of Wolsong Unit 1. Decommissioning radiation-contaminated structures and facilities presents significant challenges due to high radiation levels, making it difficult for workers to access these areas. Therefore, technology development should precede decommissioning process assessments and safety evaluations, facilitating the derivation of optimal decommissioning procedures and ensuring worker safety while enhancing the efficiency of decommissioning operations. In this study, we have developed a program to estimate decommissioning waste amounts for PHWRs, building upon prior research on PWR decommissioning projects while accounting for the specific design characteristics of PHWRs. To evaluate the amount of radioactive waste generated during decommissioning, we considered the characteristics of radioactive waste, disposal methods, packaging container specifications, and the criteria for the transfer of radioactive waste to disposal operators. Based on the derived algorithm, we conducted a detailed design and implemented the program. The proposed program is based on 3D modeling of the decommissioning components and the calculation of the Work Difficulty Factor (WDF), which is used to determine the time weighting factors for each task. Program users can select the cutting and packaging conditions for decommissioning components, estimate waste amount based on the chosen decommissioning method, and calculate costs using time weighting factors. It can be applied not only to PHWRs, but also to PWRs and non-nuclear fields, providing a flexible tool for optimizing decommissioning process.
안정동위원소 분석 기법(Stable isotope analysis, SIA)은 환경과학, 생태학, 지구생물화학, 법의학, 고고학 등 다양한 연구 분야에 활용되고 있다. 본 총설에서는 수산 및 양식 연구에 안정동위원 소 비 분석 기법을 활용하기 위해 필요한 배경 지식을 소개하고자 한다. 특히, 자연 값(natural abundance)을 이용하는 연구에 초점을 두었고 원소가 생물의 조직으로 통합되는 과정에서 발 생하는 분별작용(동위원소 비의 변화)에 대한 원리와 안정동위원소 비가 유용한 도구로서 어 떤 목적으로 생태, 환경학 분야에 이용되는지, 나아가 수산 및 양식 분야에 활용 가능한 예들 을 제시하고자 한다. 본 논문을 통한 안정동위원소 분야의 이해로 향후 수산학 및 양식 연구 에서 안정 동위원소 비의 다양한 활용이 기대된다.
The purpose of this study is to look into the effect of a horticultural activity program on career women’s job satisfaction. As the research subject, this study set 37 career women of 6 occupational clusters, such as elementary school teachers, nurses, social workers, care teachers, and police officers in ‘P’ city, and financiers in ‘D’city. The horticultural activity program was applied for about 10 months from June 2013 to April 2014, and for each job group the program was executed once a week and a total of 8 sessions. As a result of the analysis of job satisfaction by conducting horticultural activity by 6 occupational cluster, occupational clusters like an elementary school teacher, and social worker showed a significant improvement in job satisfaction immediately after horticultural activity was conducted, and in 4 weeks after that, all 5 occupational clusters but a care teacher cluster were found not to show a significant difference. It is expected that various horticultural activity programs would provide emotional stability to working women and consequently improve their overall quality of life. As a result of the above research, this study confirmed that improvement in job satisfaction is more effective when a person steadily participates in gardening activity rather than doing gardening activity temporarily. In addition, this study confirmed that gardening activity could be an alternative remedy which provides a positive change to a career woman’s job satisfaction.