FT-IR, GC/MS, and ATR-FT-IR analyses were performed to confirm the physicochemical characteristics of saw palmetto fruit (SPF) extract. FT-IR analysis of the standard product showed that the band corresponding to the carbonyl bond of free fatty acid was stronger than the band of acyl-glyceride. Sample E was identified as having the same trend as the standard sample. Fatty acid composition analysis revealed that the main fatty acids in the standard sample were lauric acid and oleic acid. The content of lauric acid ranged from approximately 30% to 38% in samples B, C, D, and E, while the content of oleic acid ranged from approximately 29% to 34%. The GC/MS analysis confirmed that the standard SPF extract consisted of fatty acids and fatty acid ethyl esters. Sample E demonstrated a similar pattern to the standard samples in terms of oleic acid, lauric acid, and fatty acid esters. ATR-FT-IR analysis indicated that only sample E was predicted to contain 100% saw palmetto extract. Therefore, these study findings can be considered fundamental data for analyzing the physicochemical characteristics of the composition of SPF extract.
자갈 궤도는 부설 후 궤도틀림이 발생하여 지속적인 유지·보수 작업이 필요하다. 이를 개선하기 위하여 기존의 자갈 궤도 에 급속경화 모르타르를 주입하여 단시간 내에 콘크리트 궤도로 치환할 수 있는 급속경화궤도가 개발되었다. 교량에 부설되 는 급속경화궤도는 교량과 궤도의 거동을 일치시키기 위하여 후설치 앵커를 궤도 세그먼트 중앙부에 시공한다. 본 논문은 앵커로 교량과 연결된 급속경화궤도와 교량의 궤도-교량 상호작용 해석을 수행하여 레일 및 앵커의 안전성을 검토하였다. 이때 앵커의 강성 및 강도, 급속경화 콘크리트의 재령, 급속경화궤도와 교량 사이의 마찰을 고려하였다. 이를 바탕으로 급속 경화궤도 부설 후 적절한 앵커의 설치시기 및 열차 정상운행 가능시기를 검토하였다.
This study analyzes the chemical composition of green tea, white tea, yellow tea, oolong tea and black tea with respect to extraction temperature and time. The optimum extraction conditions for these teas were determined by assessing the chemical composition of tea brewed at different temperature (50, 60, 70, 80℃) and extraction times (1, 3, 5, 10 minute). Catechins contents were the largest at 5 minutes and generally declined by 10 minutes. Green tea catechins contents were highest when brewed at 70℃ and besides other teas a change of the trend variation at 70 and 80℃. These temperatures did not extract theaflavins in green tea. Extract temperature and time did not significantly affect theaflavins content of white tea, yellow tea, and oolong tea. Black tea, however, was noticeably dependent on extract conditions, which were most effective at 70℃, brewed for 5 minutes. Caffeine content of green tea, yellow tea, and oolong tea was highest at 5 minutes, but temperature did not appear to affect the content. White tea and black tea caffeine content was highest when brewed at 70℃ for 5 minutes. Theobromine content of green tea, yellow tea, oolong tea, and black tea did not show major differences between the study times or temperature, though the content in white tea increased with higher temperatures when brewed for 5 minutes. The extraction of phenolic compounds increased until 5 minutes, and showed not further increase at 10 minutes. Antioxidant capacity of green tea, white tea, and yellow tea were maximized at 70℃ for 5 minutes or 80℃ for 3 minutes, while oolong and black tea were reached maximum antioxidants at 70℃ for 5 minutes. In general, to optimize the beneficial chemical content of brewed tea, a water temperature of 70℃ for 5 minutes is recommended.
During bone remodeling, there is requirement of differentiation of osteoblastic cells. Previously, we identified proteins differentially expressed in soft tissue during bone healing. Of these proteins, we focused the effect of LTF on differentiation of osteoblast. In order to analyze the osteogenic ability of LTF, we treated conditioned media collected from human LTF-stably transfected HEK293T cells into osteoblastic MC3T3-E1. The results showed that the activity and expression of alkaline phosphatase were increased in MC3T3-E1 cells treated with conditioned media containing LTF in dose- and time-dependent manner. At the same time, we observed the significant increase of the expression of osteoblastic genes, such as ALP, BSP, COL1A1, and OCN, and along with matrix mineralization genes, such as DMP1 and DMP2, in LTF conditioned media-treated groups. Moreover, the result of treating recombinant human LTF directly into osteoblastic MC3T3-E1 showed the same pattern of treating conditioned media containing LTF. Our study demonstrated that LTF constitutively enhances osteoblastic differentiation via induction of osteoblastic genes and activation of matrix mineralization in MC3T3-E1 cells.
Peroxiredoxin Ⅱ (Prdx Ⅱ; a typical 2-Cys Prdx) has been originally isolated from erythrocytes, and its structure and peroxidase activity have been adequately studied. Prdx Ⅱ has been reported to protect a wide range of cellular environments as antioxidant enzyme, and its dysfunctions may be implicated in a variety of disease states associated with oxidative stress, including cancer and aging-associated pathologies. But, the precise mechanism is still obscure in various aspects of aging containing ovarian aging. Identification and relative quantification of the increased proteins affected by Prdx Ⅱ deficiency may help identify novel signaling mechanisms that are important for oxidative stress-related diseases. To identify the increased proteins in Prdx Ⅱ—/— mice, we performed RBC comparative proteome analysis in membrane fraction and cytosolic fractions by nano-UPLC-MSE shotgun proteomics. We found the increased 86 proteins in membrane (32 proteins) and cytosolic (54 proteins) fractions, and analyzed comparative expression pattern in healthy RBCs of Prdx Ⅱ+/+ mice, healthy RBCs of Prdx Ⅱ—/— mice, and abnormal RBCs of Prdx Ⅱ—/— mice. These proteins belonged to cellular functions related with RBC lifespan maintain, such as cellular morphology and assembly, cell-cell interaction, metabolism, and stress-induced signaling. Moreover, protein networks among the increased proteins were analyzed to associate with various diseases. Taken together, RBC proteome may provide clues to understand the clue about redox-imbalanced diseases.
Ovarian cancer is the most lethal gynecological malignancy, and specific biomarkers are important needed to improve diagnosis, prognosis, and to forecast and monitor treatment efficiency. There are a lot of pathological factors, including reactive oxygen species (ROS), involved in the process of cancer initiation and progression. The oxidative modification of proteins by ROS is implicated in the etiology or progression of disorders and diseases. In this study, a labeling experiment with the thiol-modifying reagent biotinylated iodoacetamide (BIAM) revealed that a variety of proteins were differentially oxidized between normal and tumor tissues of ovarian cancer patients. To identify cysteine oxidation-sensitive proteins in ovarian cancer patients, we performed comparative analysis by nano-UPLC-MSE shotgun proteomics. We found oxidation-sensitive 22 proteins from 41 peptides containing cysteine oxidation. Using Ingenuity program, these proteins identified were established with canonical network related to cytoskeletal network, cellular organization and maintenance, and metabolism. Among oxidation-sensitive proteins, the modification pattern of Collagen alpha-1(VI) chain (COL6A1) was firstly confirmed between normal and tumor tissues of patients by 2-DE western blotting. This result suggested that COL6A1 might have cysteine oxidative modification in tumor tissue of ovarian cancer patients.
Selenoprotein S (SelS) is widely expressed in diverse tissues where it localizes in the plasma membrane and endoplasmic reticulum. We studied the potential function of SelS in erythrocyte differentiation using K562 cells stably over-expressing SelS wild-type (WT) or one of two SelS point mutants, U188S or U188C. We found that in the K562 cells treated with 1μM Ara-C, SelS gradually declined over five days of treatment. On day 4, intracellular ROS levels were higher in cells expressing SelS-WT than in those expressing a SelS mutant. Moreover, the cell cycle patterns in cells expressing SelS-WT or U188C were similar to the controls. The expression and activation of SIRT1 were also reduced during K562 differentiation. Cells expressing SelS-WT showed elevated SIRT1 expression and activation (phosphorylation), as well as higher levels of FoxO3a expression. SIRT1 activation was diminished slightly in cells expressing SelS-WT after treatment with the ROS scavenger NAC (12 mM), but not in those expressing a SelS mutant. After four days of Ara-C treatment, SelS-WT-expressing cells showed elevated transcription of β-globin, y-globin, ε-globin, GATA-1 and zfpm-1, whereas cells expressing a SelS mutant did not. These results suggest that the suppression of SelS acts as a trigger for proerythrocyte differentiation via the ROS-mediated downregulation of SIRT1.
The research concerned of the regeneration of plants from embryos obtained from anther cultures of ginseng (Panax ginseng C. A. Meyer). The aim was to determine the influence of the regeneration medium on the efficiency of the regeneration process. We conducted to determine the optimum conditions such as cold pretreatment, plant growth regulators and carbon sources on anther culture of P. ginseng. Highest callus formation rate was obtained when flower buds pretreated at 4℃ for 1 day. Among the treated growth regulators with various degrees of concentration in Murashige and Skoog's (MS) medium, 4.53 μm of 2.4-dichlorophenoxyacetic acid and 4.44 μm of 6-benzylaminopurine gives the most responsive callus with the frequency of 73.89% and 129.53 g of fresh weight. When we used 3-9% of sucrose and maltose among the different kinds and various concentrations of carbohydrates, callus was formed highest 67.29% in the medium with 3% of sucrose. Shoots induced from callus supplemented with 28.9 μm of gibberellic acid and rooted in Gamborg's B5 medium supplemented with 14.7 μm of indole-3-butyric acid.