In this paper, two kinds of advanced powder processing techniques Metal Injection Molding (MIM) and Direct Laser Forming (DLF) are introduced to fabricate complex shaped Ti alloy parts which are widely used for med- ical and aerospace applications. The MIM process is used to strengthen Ti-6Al-4V alloy compacts by addition of fine Mo, Fe or Cr powders. Enhanced tensile strength of 1030 MPa with 15.1% elongation was obtained by an addition of 4 mass%Cr because of the microstructural modification and also the solution strengthening in beta phase. However, their fatigue strength was lower compared to wrought materials, but was improved by HIP. Subsequently, the effect of feed- ing layer height (FLH) on the characteristics of the DLF compacts was investigated. In the case of 100 µm FLH, sur- face roughness was improved and nearly full density (99.8%) was obtained. Also, tensile strength of 1080 MPa was obtained, which is higher than the ASTM value.
Gas surface treatment is considered to be effective for titanium because of its high reactivity. In this study, we investigated the gas nitriding mechanism in titanium sintered parts produced by metal powder injection molding (MIM) process. The microstructure and nitrogen content of sintered MIM parts were greatly affected by nitriding conditions. Nitriding process strongly depended on the specimen size, for example, the size of micro metal injection molding (μ-MIM) product is so small and the specific surface is so large that the mechanical and functional properties can be modified by nitriding.
This paper investigates the characteristic of single-layered and multi-layered compacts made by selective laser sintering using titanium powder (TILOP45 and TILOP150, Sumitomo Titanium Corp.) There were few defects in smooth surface of laser sintered specimen in vacuum as compared to the laser sintered specimen in argon. Maximum tensile strength of singlelayered compact was about 200MPa. Multi-layered compacts show the density of around 75% and the adhesive bonding was not observed between layers, resulted in 70MPa of maximum bending strength and 50MPa of maximum tensile strength.
The spherical and high quality Titanium fine powder "Tilop" has been produced with gas atomization furnace, Sumitomo Titanium Corporation originally designed. Recently, a new process which can produce Ti-alloy(Ti-6Al-4V) powders by utilizing our gas atomization process, of which raw material is sponge titanium pre-mixed with alloy chips or granules has been also developed. The particle size of gas atomized Ti-alloy powder and the mechanical properties of sintered Ti-alloy compacts prepared by metal injection molding were discussed in this study.
A new PIM in-process joining technique has been developed for more complicated and functional PIM components by application of the exuded wax from the green compacts during solvent debinding step. At first, various stainless steels and iron compacts with rectangular shape were combined, and the joining behaviors and properties were investigated by shear and tensile test, and microscopic observation. Subsequently, perfect joined three pieces of thin and hollow compacts were obtained for the combination of same and different stainless steels, and it was difficult to join the iron and stainless steel compacts in hydrogen atmosphere because of the different starting temperature of shrinkage. However, pretty good joined iron and stainless steel compacts were obtained by consideration of particle size and vacuum atmosphere. Finally, for the combination of ferro-silicon and austenitic stainless steel compacts, high functionality (magnetic (1.60Tes1a) & non-magnetic) and perfect joint were obtained.