A non-equilibrium powder metallurgy processing such as an MA/SPS (Mechanical Alloying / Spark Plasma Sintering) process is examined in a Ti-48moll%Al. TiAl intermetallic compound is a potential light-weight/high-temperature structural material. One of the major problems, however, limiting the practical use of the material is its poor workability. From this point, the powder metallurgy (PM) processing route has been attractive alternative of the conventional processing for such material The MA/SPS process is able to apply to a LIGA process. Optimization of the pseudo-superplasticity enables to fabricate micro-parts made of fine grained ceramics composites of TiAl by the LIGA process.
Gas surface treatment is considered to be effective for titanium because of its high reactivity. In this study, we investigated the gas nitriding mechanism in titanium sintered parts produced by metal powder injection molding (MIM) process. The microstructure and nitrogen content of sintered MIM parts were greatly affected by nitriding conditions. Nitriding process strongly depended on the specimen size, for example, the size of micro metal injection molding (μ-MIM) product is so small and the specific surface is so large that the mechanical and functional properties can be modified by nitriding.
A novel production method for porous metal components has been developed by applying powder space holder (PSH) method to metal powder injection molding (MIM) process. The PSH-MIM method has an industrial competitive advantage that is capable of net-shape manufacturing the micro-sized porous metal products with complicated shapes and controlled porosity and pore size. In this study, the small impeller with homogeneous micro-porous structure was manufactured by the PSH-MIM method. The effects of combinations in size and fraction of PMMA particle on dimensional tolerance and variation of sintered porous specimens were investigated. It was concluded that the PSH-MIM method could manufacture commercially microporous metal components with high dimensional accuracy.
The production method of micro sacrificial plastic mold insert metal injection molding, namely process has been proposed to solve specific problems involving the miniaturization of MIM. Two types of sacrificial plastic molds (SP-mold) with fine structures were used: 1) PMMA resist, 2) PMMA mold injected into Ni-electroform, which is a typical LIGA () process. Stainless steel 316L feedstock was injection-molded into the SP-molds with multi-pillar structures. This study focused on the effects of metal particle size and processing conditions on the shrinkage, transcription and surface roughness of sintered parts.
This study aims to investigate the usage of nano-scale particles in a micro metal injection molding (-MIM) process. Nanoscale particle is effective to improve transcription and surface roughness in small structure. Moreover, the effects of hybrid micro/nano particles, Cu/Cu and SUS/Cu were investigated. Small dumbbell specimens were produced using various feedstocks prepared by changing binder content and fraction of nano-scale Cu particle (0.3 and in particle size). The effects of adding the fraction of nano-scale Cu powder on the melt viscosity of the feedstock, microstructure, density and tensile strength of sintered parts were discussed.
For the austenitic stainless steel (304L) manufactured by metal injection molding(MIM), the effects of copper content and sintering temperature on the mechanical properties, antibacterial activities, corrosion resistance, and electric resistances were investigated. The specimens were prepared by injection molding of the premixed powders of water-atomized 304 L and Cu with poly-acetyl binders. The green compacts were prepared with various copper contents from 0 to 10 wt.% Cu, which were debound thermally at 873 K for 7.2 ks in gas atmosphere and subsequently sintered at various temperatures from 1323 K to 1623 K for 7.2 ks in Ar gas atmosphere. The relative density and tensile strength of the sintered compacts showed the minimum values at 5 and 8 wt.% Cu, respectively. Both the relative density and the tensile strength of the specimen with 10 wt.% Cu sintered at 1373 K showed the highest values, higher than those of copper-free specimen. Antibacterial activities investigated by the plastic film contact printing method for bacilli and the quantitative analysis of copper ion dissolved in water increased as the increase of the copper content to stainless steels. It was also verified by the measurement of pitting potential that the copper addition in 304 L could improve the corrosion resistance. Furthermore the electric conductivity increased with the increase of copper content.