Tulsi (Ocimum sanctum), commonly known as Holy Basil is a revered herb with a rich history in traditional medicine systems, particularly in Southeast Asia. For its medicinal properties, Tulsi has been regarded as an “Elixir of Life” and has been used to treat various ailments. However, the comprehensive investigation of Tulsi extracts and their potential pharmacological benefits, specifically in relation to antioxidant activity remains limited. Hence, the objective of this study was to evaluate the antioxidant activity of Tulsi leaf and stem extract using various screening methods. We investigate the antioxidant activity exhibited by the extract using three different methods involved the utilization of the total polyphenol content assay, the ferric reducing power assay and 2, 2-diphenyl-1-14 picrylhydrazyl (DPPH) assays. The results revealed that the Tulsi leaf extract (TLE) exhibited significantly higher antioxidant activity when compared to the Tulsi stem extract (TSE) in all the performed assays. The higher content of phenolics in TLE may have contributed to its superior antioxidant activity. The HPLC (high performance liquid chromatography) analysis of TLE revealed the presence of eugenol, active compound for several therapeutic properties. These findings provide an understanding of the bioactive compounds present in Tulsi extracts and their potential antioxidant benefits.
The leaves of Allium victorialis (AV) are known an edible perennial herb, which has been used in Korean traditional medicine. However, the beneficial pharmacological effects of AV extracts (AVE) on the antioxidant activity and atopic dermatitis (AD) have not been thoroughly examined. Therefore, the present study aims to investigate both antioxidant activity and anti-inflammatory effect of AVE on AD in vitro and in vivo. Antioxidant activity was evaluated by total polyphenol content and ferric reducing ability. AVE showed a level of polyphenol content and reducing power activity. The five-week-old BALB/c mice were used as an AD-like mouse model by treating them with 1-chloro-2, 4-dinitrobenzene (DNCB). Topical administration of AVE for 3 weeks to DNCB-treated mice significantly alleviated clinical skin lesion dermatitis severity and epidermal thickness. Histopathological analysis also demonstrated that AVE decreased eosinophil and mast cell infiltration into skin and ear tissue. These results suggest that topical application of AVE inhibits the development of AD-like skin lesion in mice by their antioxidant activity. Thus, AVE may be a potential therapeutic agent for AD.
Jellyfish envenomation is a world-wide health problem, which often seriously affect the fishery and bathing activities. To date, few individual jellyfish venoms proteins have been thoroughly characterized yet. In this work, four species of scyphozoan jellyfish (Nemopilema nomurai, Cyanea nozakii, Aurellia aurita and Rhopilema esculentum) are compared according to their, cytotoxicity, hemolytic potency, brine shrimp toxicity and protein components. Jellyfish venoms showed higher cytotoxicity in H9C2 heart myoblast than in C2C12 skeletal myoblast, with the exception of C. nozakii venom. This result suggests that the selective cytotoxic effects may be possibly related to their in vivo effects of cardiac tissue dysfunction. On the other hand, hemolytic activity could be also observed from all tested jellyfish venoms. N. nomurai jellyfish venom displaying the greatest hemolytic activity. As an alternative method of evaluating the toxicities of jellyfish venoms, the toxicity on brine shrimp was examined with the four jellyfish venoms. From this, the venom of N. nomurai showed higher toxicity against brine shrimp than the other jellyfish venoms, which is consistent with the results of cytotoxicity assay as well as hemolysis assay of the present study. SDS-PAGE analysis of four jellyfish venoms showed the similar pattern with molecular weight of around 40 kDa, and appeared to be the major protein components. These results provided that N. nomurai jellyfish venom was potently toxic than other scyphozoan jellyfish venoms and may explain to some extent the deleterious effects associated with human envenoming.