Ainsliaea acerifolia, a perennial herbaceous plant endemic to forested regions of the Korean Peninsula, has drawn attention for its bioactive properties and potential as a functional food and medicinal resource. Despite its ecological and economic value, little is known about its spatial distribution or habitat preferences under changing climatic conditions. This study aims to quantify the current and future habitat suitability of A. acerifolia in southeastern Korea—including Gyeongsangnam-do, Busan, and Ulsan—using the MaxEnt (Maximum Entropy) species distribution model. A total of 217 presence records were compiled from both GBIF data and field surveys, and seven key environmental variables were selected through multicollinearity screening. Model performance was robust (mean AUC = 0.845), and key predictors included topographic roughness (TRI), precipitation of the driest month (Bio14), and mean diurnal range (Bio2). Under current climate conditions, 31.5% of the study area was identified as suitable habitat (≥0.222), with only 4.7% categorized as core habitat (≥0.6). Future projections under SSP1-2.6, SSP2-4.5, and SSP5-8.5 scenarios indicated substantial habitat contraction, particularly in coastal and lowland areas, with refugial zones likely to persist in mid-elevation inland mountains (500–900 m). These findings suggest that A. acerifolia is highly sensitive to climatic variability and emphasizes the urgent need for conservation strategies focused on climate-resilient refugia and ecological corridors. The study provides a spatial framework for species conservation planning under future climate uncertainty.
The postharvest quality of cut flowers often declines during transportation, especially under dry storage conditions. Therefore, incorporating preservative solutions during shipment is vital for extending the vase life of high-value cut flowers. Among commonly used additives, sucrose (Suc) and Floralife (FL), a commercial preservative, have demonstrated efficacy in maintaining vase life. Oxygen nanobubbles (O2NB) and ozone nanobubbles (O3NB), which are nanoscale gas-filled bubbles in aqueous media, have been proposed as antimicrobial agents for use in preservative solutions applied to cut flowers. This study examined the effects of seven preservative treatments on the postharvest performance of cut Cymbidium ‘Lovely King’ during simulated transport. Treatments included tap water (control), Suc, FL, O2NB, O2NB combined with Suc (O2NBS), O3NB, and O3NB combined with Suc (O3NBS). Cut stems were placed in floral water tubes filled with the respective solutions and stored in a cold chamber at 5°C for 7 days to simulate transport conditions. Among the treatments, O2NB resulted in the longest vase life of 21.0 days, significantly longer than that under O2NBS (14.3 days). Additionally, the O2NB solution exhibited the lowest bacterial count (4.9 log 10 CFU mL-1) compared with other treatment solutions. Stems treated with O3NB maintained the highest relative fresh weight throughout the experiment. Initial water uptake was 8.4 g and 7.6 g for the O3NB and O2NB treatments, respectively. These findings indicate that O2NB is an effective transport preservative for enhancing postharvest quality and extending the vase life of cut Cymbidium ‘Lovely King.’
본 연구는 우리나라에 자생하는 목본 관상용 식물인 먼나무 (Ilex rotunda)와 으름덩굴(Akebia quinata)을 대상으로 삽목 효율을 분석하였다. 삽수는 녹지와 숙지로 구분하고 생장조절 제 indole-3-butyric acid (IBA)와 시판용 발근촉진제 루톤 (Rootone)을 처리하여 대조군과 비교하였다. 그 결과, 발근율 (녹지, 숙지)은 먼나무(50.9, 19.0%) 및 으름덩굴(52.8, 28.5%) 로 두 수종 모두 숙지보다는 녹지가 손쉽게 발근되었다. 생장조절 제의 발근 촉진 효과는 녹지보다는 숙지에서 두드러졌으며, 생장 조절제 효과는 두 수종에서 상이하게 나타났으며, IBA와 루톤에 대한 두 수종의 발근 반응이 다르게 나타냈다. IBA 1,000ppm 처리는 먼나무의 발근을 촉진시켰고(65.9%) 으름덩굴에서는 고 사에 따른 발근율 저하를 야기하였으며(5.0%), 오히려 으름덩굴 은 루톤 처리로 발근이 촉진되었다(83.3%).
Amitriptyline hydrochloride (AMT), a tricyclic antidepressant, is known to exhibit antimicrobial effects against a wide range of bacterial species. This study aims to evaluate the effect of AMT on Brucella (B.) abortus infection in RAW 264.7 cells and ICR mice, which has not yet been clearly characterized. The results showed that all tested concentrations of AMT had no direct bactericidal effect on B. abortus survival at any incubation time point. Interestingly, RAW 264.7 cells pre-treated with a non-toxic high concentration of AMT before B. abortus infection showed a significant reduction in the phagocytosis of B. abortus at 20 min post-infection, compared to untreated cells. However, AMT treatment did not affect the intracellular replication of B. abortus compared to the control cells. Based on the reduced bacterial uptake observed in-vitro, an in-vivo experiment was conducted to assess whether daily oral administration of AMT at a dose of 20 mg/kg could inhibit B. abortus growth in ICR mice. The results showed that AMT treatment slightly increased both organ weights and bacterial loads, suggesting possible systemic effects of prolonged AMT exposure. In summary, these preliminary results provide initial insight into the potential effects of AMT on B. abortus infection both in-vitro and in-vivo. Therefore, further study should focus on dose optimization in-vivo and exploration of the underlying cellular mechanisms involved in AMT-mediated inhibition of phagocytosis during Brucella infection.
Lithium- and manganese-rich layered oxide (LMRO) is considered a promising cathode material for lithium-ion batteries owing to its high capacity and energy density. However, operation at a high voltage of 4.8 V leads to several issues including low Coulombic efficiency, poor cycle life, slow kinetics, and voltage decay due to spinel phase transition, hindering commercialization. Herein, we synthesized a cobalt-free LMRO cathode and studied the effect of Nb2O5 and Sb2O3 coating layers on electrochemical performance. The Nb2O5 coating facilitated the formation of a LiNbO3 layer, which enhanced the initial electrochemical performance, including Coulombic efficiency and energy density. Meanwhile, Sb2O3 not only coated the surface but also doped into the bulk structure, thereby increasing capacity and improving rate capability. Comparative analysis using materials with different structural solubility revealed how oxide coatings influenced lithium-ion transport and electrochemical behavior. This study highlights the importance of interfacial engineering for optimizing LMRO cathodes for high-performance lithium-ion batteries.
In this study, proteins were extracted from sesame and perilla meals (agricultural by-products) by using hot-water defatting and acid precipitation, and their functional properties were compared with those of a commercial soy protein isolate (SPI). According to the SDS-PAGE results, the sesame meal protein extract (SMPE) exhibited a higher content of hydrophobic amino acids than the perilla meal protein extract (PMPE), alongside a relatively lower intensity of the 7S globulin band. SMPE showed 1.41-fold higher solubility than SPI at pH 10 and 1.72- and 1.66-fold higher emulsifying activity indices (EAIs) at pH 8 and 10, respectively. PMPE exhibited similar trends in solubility and EAI as SPI at the corresponding pH values. However, the emulsifying stability indices of SMPE and PMPE were lower than that of SPI. In particular, the fat absorption capacity of SMPE was significantly higher than those of SPI and PMPE, likely because of its higher content of hydrophobic or nonpolar amino acid residues. These results suggest that SMPE and PMPE are promising alternative protein sources for food applications and may promote value-added utilization of plant-derived by-products in the food industry.
In this study, conjugates were prepared via dry heat-induced glycosylation with maltodextrin (MD) to enhance the functional properties of sesame meal protein extract (SMPE). With the progress of conjugation, the specific protein bands of SMPE decreased and new bands appeared in the higher molecular weight range (approximately 170 kDa). The FT-IR spectra confirmed the structural modifications resulting from Maillard reaction-driven covalent bonding between SMPE and MD. The solubility and emulsifying properties—emulsifying activity index (EAI) and emulsifying stability index (ESI)—of the conjugates showed little variation with dry-heat treatment time, but they were significantly influenced by the dextrose equivalent (DE) of MD. Solubility was highest when SMPE was conjugated with MD of DE 4–7 at both 12 h (19.38%) and 24 h (20.54%) and decreased as DE increased. Notably, the three-way ANOVA results showed that the emulsifying properties improved significantly with higher DE of MD. The EAI and ESI of SMPE conjugated with MD of DE 16.5–19.5 increased by 1.52- and 1.41-fold, respectively, when compared with the control SMPE. These findings suggest that the SMPE-MD conjugates have promising potential for applications in food systems that require enhanced emulsifying properties.
풀빅산(FA)은 Fe(III)을 킬레이트화하여 생물학적으로 이용 가능한 Fe(II)로 전환함으로써 대형 해조류의 성장을 촉진하고 손 상된 해중림의 복원을 돕는다. 이에 본 연구에서는 풀빅산의 공급에 따른해중림 개선에 미치는 효과를 조사, 분석하였다. FA 보충제는 철(Fe) 부족 해역 내 인공 어초에 설치되었으며, 해조류 군집 및 해양 환경조사는 사계절을 대표하는 학술 잠수를 통해 수행되었다. 연 구 결과, 풀빅산 공급으로 인해 가용 철(Fe) 농도가 증가하면서 해조류의 광합성과 영양소 흡수가 촉진되어 성장률이 향상되는 것으로 나타났다. 우점종의 총 생물량은 전체 해조류 총 생물량과 비우점종에 비해 더욱 강한 상관관계를 나타내었다. 이는 철 보충제가 특정 우점종의 양적 증가에 기여하며, FA 보충제가 설치된 어초에서 해조류 군집의 양적 및 구조적 변화를 유발했음을 시사한다. 본 연구 결과는 풀빅산을 해중림 복원에 적용하기 위한 기초적인 정보를 제공하며, 향후 해조류 생태계 관리 및 보존 전략 수립에 기여할 수 있을 것으로 기대된다.