The detection of Mycobacterium bovis (M. bovis) in environmental samples with precision is imperative to control bovine tuberculosis (bTB) infections at the herd level, as residual M. bovis remains one of the major causes of recurring infections. In this study, a nested PCR method for the detection of M. bovis in environmental samples was applied to identify potential environmental reservoirs of the bacterium. A set of 200 environmental samples (167 fecal samples and 33 water samples) from 39 herds with a history of bTB outbreak was analyzed using a nested PCR method to detect residual M. bovis. Amplicon libraries of the IS6110 target gene fragment were amplified from M. bovis DNA using two established primer sets. A positive nested PCR result was observed in 69.5% of fecal samples and 66.7% of water samples, thus showing that residual M. bovis was present in the environmental samples of bTB-positive herds in a high proportion. This study is the first to demonstrate high levels of M. bovis DNA in environmental samples and to show that environmental reservoirs of this pathogen contribute to recurring outbreaks of bTB. Environmental monitoring of herds in which bTB outbreaks have occurred with high sensitivity and specificity is expected to help prevent the recurrence of potential bTB disease and improve the herd environment.
We have estimated the fractal dimension of the molecular clouds associated with the H ΙΙ region Sh 156 in the Outer Galaxy. We selected the 12CO cube data from the FCRAO CO Survey of the Outer Galaxy. Using a developed code within IRAF, we identified slice-clouds (2-dimensional clouds in velocity-channel maps) with two threshold temperatures to estimate the fractal dimension. With the threshold temperatures of 1.8 K, and 3 K, we identified 317 slice-clouds and 217 slice-clouds, respectively. There seems to be a turn-over location in fractional dimension slope around NP (area; number of pixel) = 40. The fractal dimensions was estimated to be D = 1.5 ∼ 1.53 for NP ≥ 40, where P ∝ AD/2 (P is perimeter and A is area), which is slightly larger than other results. The sampling rate (spatial resolution) of observed data must be an important parameter when estimating fractal dimension. Fractal dimension is apparently invariant when varying the threshold temperatures applied to slice-clouds identification.