Maca has been reported to alleviate male menopause symptoms in humans and experimental animals; however, its mechanism of action in improving male menopause has not been clearly identified. This study aimed to investigate the mechanism of action of gelatinized maca in improving male menopause by analyzing serum testosterone, testicular androgen receptor (AR) expression, and testicular oxidation-antioxidation balance. Gelatinized maca was administered orally to aged male C57BL/6 mice at three doses (500, 1,000, and 1,500 mg/kg/day) for 28 consecutive days. Serum biochemical analysis showed an increase in serum hydroxysteroid 17-beta-dehydrogenase 13 (HSD17β13) concentration at 1,500 mg/kg/day and a decrease in serum sex hormone-binding globulin (SHBG) concentration at ≥ 1,000 mg/kg/day. Gelatinized maca administration also resulted in the increased expression levels of testicular AR and cyclic adenosine monophosphate (cAMP) response element binding protein (CREB) at 1,500 mg/kg/day. Oxidative stress analysis showed an increase in testicular superoxide dismutase and glutathione reductase activities and a decrease in testicular malondialdehyde at 1,500 mg/kg/day. In conclusion, gelatinized maca administration to aged male mice increased HSD17β13, AR and CREB expression, and antioxidant capacity and decreased serum SHBG. The results of the present study suggest that gelatinized maca may be a useful substance that can help alleviate male menopause symptoms.
Background: Functional sarcopenia, a subcategory of sarcopenia, has recently been introduced. It is defined by muscle weakness and reduced physical performance, regardless of muscle mass reduction, and may potentially affect overall rehabilitation outcomes in patients. Objectives: This study aimed to classify stroke patients into two groups based on the presence or absence of functional sarcopenia and to compare changes in balance and gait ability after receiving the same rehabilitation intervention. Design: A quasi-experimental design. Methods: A total of 44 stroke patients participated in this study and were classified into functional sarcopenia (n=22) and non-functional sarcopenia groups. Physical function tests were used to assess balance (Timed Up and Go, Berg Balance Scale) and gait (10-Meter Walk Test, Functional Ambulation Category). All participants underwent a four-week convalescent rehabilitation program, receiving five sessions per week, with each session lasting four hours per day. Results: After four weeks of convalescent rehabilitation, both groups showed significant improvements in all outcome measures (P<.05). However, when comparing the pre-post changes, no significant differences were found between the two groups in the changes of balance and gait outcomes (P>.05). Conclusion: These findings suggest that stroke patients with functional sarcopenia can achieve a similar level of functional recovery as those without functional sarcopenia when provided with appropriate rehabilitation interventions.
Photometric and spectroscopic observations of GV Leo were performed from 2017 to 2024. The light curves show a flat bottom at the primary eclipse and the conventional O’Connell effect. The echelle spectra reveal that the effective temperature and rotation velocity of the more massive secondary are Teff,2 = 5220 ± 120 K and v2 sin i = 223 ± 40 kms−1, respectively. Our binary modeling indicates that the program target is a W-subclass contact binary with a mass ratio of q = 5.48, an inclination angle of i = 81.◦68, a temperature difference of (Teff,1 − Teff,2) = 154 K, and a filling factor of f = 36%. The light asymmetries were reasonably modeled by a dark starspot on the secondary’s photosphere. Including our 26 minimum epochs, 84 times of minimum light were used to investigate the orbital period of the system. We found that the eclipse times of GV Leo have varied by a sinusoid with a period of 14.9 years and a semi-amplitude of 0.0076 days superimposed on a downward parabola. The periodic modulation is interpreted as a light time effect produced by an unseen outer tertiary with a minimum mass of 0.26 M⊙, while the parabolic component is thought to be a combination of mass transfer (secondary to primary) and angular momentum loss driven by magnetic braking. The circumbinary tertiary would have caused the eclipsing pair of GV Leo to evolve into its current short-period contact state by removing angular momentum from the primordial widish binary.
Galaxy evolution studies require the measurement of the physical properties of galaxies at different redshifts. In this work, we build supervised machine learning models to predict the redshift and physical properties (gas-phase metallicity, stellar mass, and star formation rate) of star-forming galaxies from the broad-band and medium-band photometry covering optical to near-infrared wavelengths, and present an evaluation of the model performance. Using 55 magnitudes and colors as input features, the optimized model can predict the galaxy redshift with an accuracy of σ(Δz/1+z) = 0.008 for a redshift range of z < 0.4. The gas-phase metallicity [12 + log(O/H)], stellar mass [log(Mstar)], and star formation rate [log(SFR)] can be predicted with the accuracies of σNMAD = 0.081, 0.068, and 0.19 dex, respectively. When magnitude errors are included, the scatter in the predicted values increases, and the range of predicted values decreases, leading to biased predictions. Near-infrared magnitudes and colors (H, K, and H −K), along with optical colors in the blue wavelengths (m425–m450), are found to play important roles in the parameter prediction. Additionally, the number of input features is critical for ensuring good performance of the machine learning model. These results align with the underlying scaling relations between physical parameters for star-forming galaxies, demonstrating the potential of using medium-band surveys to study galaxy scaling relations with large sample of galaxies.
Background: Multiple fractures, particularly femoral fractures, are increasingly prevalent and associated with high mortality rates and significant functional impairments. This highlights the urgent need for effective rehabilitation strategies, such as robot-assisted training, to enhance recovery and improve quality of life. Objectives: This study aimed to evaluate the clinical effectiveness of robotassisted rehabilitation for multiple femoral fractures. Design: Single-subject design. Methods: A 15-day A-B-A' single-subject design was employed. A man in his 30s with multiple fractures underwent standard rehabilitation during the baseline (A) and regression baseline (A') phases, with robotic therapy introduced during the intervention phase (B). Daily assessments of mobility and balance were analyzed using the two-standard deviation method. Results: Robotic therapy led to significant improvements: the TUG test time decreased from 16.21±0.64 seconds (A) to 10.63±0.46 seconds (B) and 9.64±0.35 seconds (A'). The 10 MWT time improved from 6.31±0.64 seconds (A) to 5.41±0.17 seconds (B) and 5.01±0.12 seconds (A'). LOS increased from 364.01±35.83 cm² (A) to 484.67±29.97 cm² (B) and 518.03±18.82 cm² (A'). Plantar pressure imbalance (59.2% right, 40.8% left in A) was corrected to nearly equal distribution in B (49.4%/50.6%) and A' (50.8%/49.2%). Conclusion: Robotic rehabilitation therapy improves balance and weightbearing capacity in patients with multiple fractures, suggesting its effectiveness as an early intervention following bone union.
Background: Stroke patients often exhibit excessive kyphosis of the spine and a forward head posture (FHP), which negatively impacts their daily activities. These postural abnormalities not only negatively affect functional movement but also exacerbate musculoskeletal problems. Objectives: This study was conducted to determine the effect of backward walking on FHP in stroke patients. Design: Single-case experimental design (A-B-A’ design). Methods: The study was conducted over a total of 8 weeks, comprising 24 sessions: 3 baseline sessions (A), 18 intervention sessions (B), and 3 regression baseline sessions (A'). No backward walking intervention was performed during baseline (A) and regression baseline (A’). To determine changes in FHP, the craniovertebral angle (CVA) was measured at all sessions. Results: The CVA increased in the intervention (B) and regression baseline (A’) compared to the baseline (A). Conclusion: Backward walking was effective in improving FHP, and the effect was maintained after intervention (B) in patients with stroke. Therefore, backward walking was effective in improving the postural alignment of stroke patients.
Hydrogen production via photoelectrochemical water splitting relies on the effectiveness of the photoelectrodes. Preparing low-dimensional structures of oxide semiconductors is a promising approach to fabricating effective photoelectrodes, by enhancing the surface-to-volume ratios of the photocatalytic materials. In this study, we performed a comparative investigation of the photoelectrochemical characteristics of p-type oxide semiconductor cupric oxide (CuO) photocathodes based on CuO thin film and nanorods. The CuO thin film was prepared via a facile method involving sputtering a Cu metallic film and subsequent thermal oxidation, while the CuO nanorods were grown via a seed-mediated hydrothermal synthesis method using a CuO nanoparticle seed layer. The structural, optical, and photoelectrochemical properties of the prepared CuO thin film and nanorods were comparatively examined. Our results confirmed that the CuO nanorod photocathode has a higher photocurrent density and better photoconversion efficiency than the CuO thin film photocathode for photoelectrochemical water splitting, implying a promising route to the fabrication of CuO-based photoelectrodes.
Two spider species of the genus Pholcus Walckenaer, 1805, Pholcus muju sp. nov. and Pholcus yeongheung sp. nov. in the family Pholcidae C. L. Koch, 1850 are newly described from Korea. These two new species belonging to phungiformes-group in the genus can be distinguished from their congeners by the shape and structure of genital organs of both males and females. They are found on rock walls in mountainous mixed forests. This work provides diagnoses, detailed descriptions, and taxonomic photographs for these new species.
The transportation of spent nuclear fuel between management stages is expected, and the transportation workers may be exposed to radiation. When transporting spent nuclear fuel, the ALARA principle must be observed for the workers. The objective of this study is to assess a radiation dose for workers transporting spent nuclear fuel using metal overpacks. For this objective, the cask to be handled was selected and the radiation source term was set. Then, the radiation exposure scenario for the transportation workers was defined. Finally, the dose rates for each location of operation were assessed using Monte Carlo simulations, and collective doses were derived for each operation considering the radiation exposure scenario. Each worker performed 11 operations to transport spent nuclear fuel to other facilities and was exposed to a total of 1.138 man-mSv. The operation of removing the bottom shield ring resulted in the highest radiation exposure at 0.503 man-mSv. In contrast, the operation of installing the impact limiter resulted in the lowest radiation exposure at 0.0009 man-mSv. The results of this study can be used to strengthen radiation protection measures for workers transporting spent nuclear fuel in dry storage facilities using metal overpacks.
We analyzed the mineral composition of compacted calcium bentonite (GJ-I) and uncompressed sodium bentonite (MX80), both of which were exposed for two years in the YS03 borehole. The YS03 borehole is characterized by a high concentration of anaerobic microorganisms, including sulfate-reducing bacteria, elevated levels of hydrogen sulfide, and high pH conditions. The compacted Ca bentonite showed minimal alteration, with a small amount of new magnetite formation. However, an X-ray diffraction (XRD) analysis revealed that the uncompressed Na bentonite underwent a complete transformation from montmorillonite to muscovite, goethite, and magnetite. Therefore, it is suspected that the compactness of the bentonite significantly impacts the rate of alteration. Furthermore, an X-ray fluorescence (XRF) analysis demonstrated a marked increase in iron oxide in the Na bentonite, whereas key elements of montmorillonite such as alumina (Al2O3), silica (SiO2), and magnesium oxide (MgO) showed substantial decreases. The presumed cause of the alteration in the uncompressed MX80 bentonite is the presence of Fe cations coupled with a high pH environment. We believe that Fe cations, which were likely released from the corrosion of cast iron, played a significant role in altering the montmorillonite lattice.
This study was conducted to investigate changes in immunoglobulin G (IgG) concentration, nutrient content, and microbial communities of fresh and heat-treated Holstein colostrum collected from a colostrum bank operated by a local agricultural technology center in Gyeongsangbuk-do, South Korea. Of the 16 colostrum samples, 8 were heated at 60℃ for 30 min under a pressure of 0.9–1 bar. The colostrum samples were stored at −70℃ until use, at which time they were thawed at 50–55℃ in a water bath to analyze IgG levels, chemical composition, and microbiome, which was identified by 16S rRNA gene sequencing using the Illumina MiSeq-PE250 platform. The IgG concentrations were similar in fresh and heat-treated colostrum. The fat, protein, and lactose contents also did not differ in these samples. However, somatic cell count (SCC) was lower in heat-treated colostrum than those in fresh colostrum (p<0.05). At the phylum level for the microbiome of fresh colostrum, Proteobacteria (44.16%) was the most abundant taxa, followed by Bacteroidota (33.26%), Firmicutes (10.04%), Actinobacteriota (7.14%), and a marginal difference in the order of abundance was observed in heat-treated colostrum. At the genus level, bacteria belonging to Sphingomonas, Delftia, Ochrobactrum, Simplicispira, and Lactobacillus were more abundant (p<0.05) in the heat-treated colostrum, while the abundance of Acinetobacter in the fresh colostrum was four times more (p<0.05) than that in the heat-treated colostrum. Our results demonstrated that heating does not affect IgG level and colostrum composition but reduces SCC (p<0.05), suggesting that heat-treated colostrum can potentially be put to further use (e.g., feeding Hanwoo calves) without compromising its quality. Differences in the microbiome between the fresh and heat-treated colostrum were limited. Further studies are required to extensively investigate the quality and safety of colostrum collected from dairy farms to ensure better utilization and processing at a local agricultural technology center.
Silage inoculants, which include beneficial microorganisms like lactic acid bacteria (LAB), play a vital role in modern silage production by enhancing fermentation quality. This study evaluated the effectiveness of various commercial inoculants on the fermentation dynamics of Italian ryegrass silage over 45 days. The treatments included a control group and five inoculant formulations: T1 (Lactiplantibacillus plantarum), T2 (Lactiplantibacillus plantarum and Pediococcus pentosaceus), T3 (Lactiplantibacillus plantarum and Pediococcus pentosaceus and Lactiplantibacillus buchneri), T4 (Lactiplantibacillus plantarum and Lactiplantibacillus acidophilus and Lactiplantibacillus bulgaricus), and T5 (Lactiplantibacillus plantarum and Pediococcus pentosaceus and Enterococcus faecium). After 45 days, all treatment groups exhibited significantly higher crude protein (CP) content compared to the control group (80.64 g/kg dry matter (DM), p<0.05). Treatments T2 and T5, which incorporated combinations of Lactiplantibacillus plantarum, Pediococcus pentosaceus and Enterococcus faecium, showed higher CP contents at 105.53 and 107.05 g/kg DM, respectively. The inoculated silages also demonstrated a rapid pH reduction within the early days, with Lactiplantibacillus plantarum in T1 reducing the pH to 4.0 within four days. Additionally, inoculated treatments had significantly higher lactic acid levels than the control (67.96 g/kg DM, p<0.05), and T3 (Lactiplantibacillus buchneri) produced higher acetic acid levels (16.07 g/kg DM, p<0.05) than other inoculants. The control group also had a notably higher ammonia nitrogen content. In conclusion, while single-strain inoculants like Lactiplantibacillus plantarum are effective for rapid acidification, the use of combined bacterial strains can further enhance silage quality by improving lactic acid fermentation and nutrient preservation, particularly in treatments like Lactiplantibacillus plantarum and Pediococcus pentosaceus and Lactiplantibacillus buchneri and Enterococcus faecium.
Because intact FMDV particles (146S) are often unstable in vitro, stabilizing foot-and-mouth disease virus (FMDV) antigens remains a key challenge in studying viral charateristics. Therefore, finding optimal condition to stabilize the FMDV is essential. In this study, we investigated formulations and potentials of several stabilizers such as appropriate buffer, excipients, and storage conditions to enhance the stability of 146S. Inactivated FMDV O-Jincheon (O-JC) was dissolved in various buffer formulations, and stored at 4℃ for two months to evaluate quantity of 146S at every 2-week interval. Among phosphate buffered saline (PBS), Tris buffered saline (TBS), HEPES buffered saline (HBS), and MOPS buffered saline (MBS), PBS showed more effective 146S stabilization that showed 1.3-1.6 fold higher 146S fraction than TBS, HBS, and MBS after storage for 2 weeks. However, constant dissociations of 146S were observed in all formulations at 8 weeks. Compared with other FMDVs, A22 Iraq and SAT-1, in PBS, O-JC proved to be the least stable in PBS. A variety of excipients including carbohydrate, sugar alcohol, cryo-protectant were tested for the capability in protecting O-JC from dissociation. By adding 4-8% sucrose, more than 60% of 146S fractions were maintained at 8 weeks, those were at least 1.8 fold higher than the PBS-only control. Addition of 1% β-cyclodextrin showed synergistic enhancement in O-JC stability. As the results of this study, it could be suggested that the PBS-based buffer together with 4-8% sucrose + 2% sorbitol or 2% sucrose + 2% sorbitol + 1% β-cyclodextrin could help the better stability of the O-JC in vaccine preparation.
In this study, simulated X-ray photoelectron spectroscopy (XPS) and Raman spectroscopy were utilized to differentiate the carbon nanoribbons (CNRs) and carbon nanobelts (CNBs) with different edges. CNRs, characterized by linear, extended π-conjugated systems, and CNBs, featuring closed-loop, cyclic structures, exhibit distinct bandgaps influenced by edge configuration and molecular structure. CNBs generally possess smaller bandgaps than GNRs due to enhanced π-conjugation and electron delocalization in their curved structures. Specifically, the bandgaps of zigzag-edged GNRs and CNBs are smaller than those of their armchair-edged counterparts. These differences in electronic states cause shifts in the position of the C1s XPS peaks. ANR and ANB exhibit lower binding energies (BEs) compared to ZNR and ZNB. The peak position differences, which are 1.3 eV between ZNR and ANR and 0.5 eV between ZNB and ANB, highlight how edge configuration can differentiate structures within the same ribbon or belt type. While ZNR and ZNB have nearly identical peak positions, rendering them hard to distinguish, the 0.9 eV difference between ANR and ANB allows for clear differentiation. In ZNR and ZNB, strong bands from C–H bending and C–C stretching were observed, with slight differences in band positions allowing for structural differentiation. In ANR and ANB, the Kekulé vibration band was most intense, appearing at lower wavenumbers in ANB. Additionally, ANB showed unique C–C stretching bands at 1483 and 1581 cm− 1, which were barely observed in ANR. This study lays the groundwork for future spectroscopic analysis of GNRs and CNBs.
Electrochemical oxidation and reduction reactions are fundamental in various conversion and energy storage devices. Functional materials derived from MOFs have been considered promising as electrical catalysts for ORR, HER, and OER, which can be used in Zinc-air batteries and water electrolysis. Herein, we designed a novel approach to fabricating the ultrafine Co9S8 embedded nitrogen-doped hollow carbon nanocages ( Co9S8@N-HC). The method involved a process of sulfidation of cobalt-based metal–organic frameworks (ZIF67) and then coating them with polypyrrole (PPy). PPy has notable properties such as high electrical conductivity and abundant nitrogen content, rendering it highly promising for catalytic applications. The Co9S8@ N-HC catalyst was successfully synthesized via the carbonization of CoSx@ PPy. Remarkably, the Co9S8@ N-HC catalyst demonstrated exceptional electrocatalytic activity, requiring only low overpotentials of 285 mV and 201 mV at 10 mA cm‒ 2 for OER and HER, respectively, and exhibited high activity for ORR, with an onset potential ( Eonset) of 0.923 V and half-wave potential ( E1/2) of 0.879 V in alkaline media. The electrocatalytic efficiency displayed by Co9S8@ N-HC opens a new line of research on the synergistic effect of MOF-PPy materials on energy storage and conversion.