In this study, we have determined mitochondrial genome of Matsucoccus thunbergianae isolated in Korea. The circular mitogenome of M. thunbergianae is 15,406 bp including 13 protein-coding genes, two ribosomal RNA genes, and 22 transfer RNAs. AT ratio is 78.2%. Maximum-likelihood and Bayesian inference phylogenetic trees show that M. thunbergianae is clustered with M. matsumurae, and family Margarodidae is clustered with family Pseudococcidae with enough supportive values.
목적 : 본 연구는 입체시 검사법들의 재현성과 교환가능성에 대해 알아보고자 하였다. 방법 : 안과적 질환과 관련된 진단을 받은 적이 없으며 교정시력이 20/20 이상인 30명을 대상으로 하였다. 굴 절이상을 확인한 후 입체시 검사(티트무스, 랑 Ⅱ, 티엔오, 프리즈비 검사)를 각각 하루 이상의 간격을 두고 두 번 검사하였다. 검사 간의 신뢰도 분석은 급내상관계수를 이용하여 분석하였다. 결과 : 반복 검사를 통한 입체시 검사의 신뢰도 확인에서 프리즈비 검사(p=0.103, ICC=0.99) 에서만 높은 재 현성을 보였다. 입체시 검사 간의 비교에서는 프리즈비와 티엔오 검사(p=0.358, ICC=0.89)에서 좋은 호환성을 확 인할 수 있었다. 20초미만의 작은 차이를 나타내는 경우 또한 42%로 모든 검사법들의 비교 중 가장 큰 비중을 차 지하는 것으로 나타났다. 결론 : 입체시 검사의 진행은 방문 간에 일정하게 유지되는 것이 좋으나 검사 방법들의 특성에 따라 신뢰도와 호환성이 좋은 입체시 검사와 함께 평가되는 것이 필요하다. 본 연구의 결과 프리즈비 검사가 신뢰도와 호환성에서 좋은 것으로 나타나 다른 검사와 함께 평가하는 것이 유용할 것으로 사료된다.
The growing significance of sustainable energy technologies underscores the need for safe and efficient management of spent nuclear fuels (SNFs), particularly via deep geological disposal (DGD). DGD involves the long-term isolation of SNFs from the biosphere to ensure public safety and environmental protection, necessitating materials with high corrosion resistance for DGD canisters. This study investigated the feasibility of a Cu–Ni film, fabricated via additive manufacturing (AM), as a corrosion-resistant layer for DGD canister applications. A wire-fed AM technique was used to deposit a millimeter-scale Cu–Ni film onto a carbon steel (CS) substrate. Electrochemical analyses were conducted using aerated groundwater from the KAERI underground research tunnel (KURT) as an electrolyte with an NaCl additive to characterize the oxic corrosion behavior of the Cu–Ni film. The results demonstrated that the AM-fabricated Cu–Ni film exhibited enhanced corrosion resistance (manifested as lower corrosion current density and formation of a dense passive layer) in an NaCl-supplemented groundwater solution. Extensive investigations are necessary to elucidate microstructural performance, mechanical properties, and corrosion resistance in the presence of various corroding agents to simplify the implementation of this technology for DGD canisters.
Mathematically modeling photosynthesis helps to interpret gas exchange in a plant and estimate the photosynthetic rate as affected by environmental factors. Notably, the photosynthetic rate varies among leaf vertical positions within a single plant. The objective of this study was to measure the distinct photosynthetic rate of lily (Lilium Oriental Hybrid ‘Casa Blanca’) at the upper, medium, and basal leaf positions. Subsequently, the FvCB (Farquhar-von Caemmerer-Berry) photosynthesis model was employed to determine the parameters of the model and compared it with a rectangular hyperbola photosynthesis model. The photosynthetic rates were measured at different intracellular CO2 concentrations () and photosynthetic photon flux density (PPFD) levels. SPAD values significantly decreased with lowered leaf position. The photosynthetic rates at the medium and basal leaves were lower compared with the upper leaves. FvCB model parameters, and , showed no significant difference between the medium and basal leaves. Estimated photosynthetic rates from derived parameters by the FvCB model demonstrated over 0.86 of R2 compared with measured data. The rectangular hyperbola model tended to overestimate or underestimate photosynthetic rates at high with high PPFD levels or low with high PPFD levels, respectively, at each leaf position. These results indicated that the parameters of the FvCB model with different leaf positions can be used to estimate the photosynthetic rate of lily.
Salinity stress is a major threat to plant growth and development, affecting crop yield and quality. This study investigated the effects of different salinity levels on photosynthetic responses and bulb growth of Lilium LA hybrid “‘Serrada’.” Plants were irrigated with 1 L of 0, 200, and 400 mM NaCl solutions every two weeks for 14 weeks in a greenhouse. At the end of the cultivation period, the substrate pH decreased, and electrical conductivity increased with increasing salinity. Regardless of salinity levels, the days to flowering and number of flowers were similar among treatments. In contrast, the flower width, plant height, number of leaves, and leaf area decreased with increasing NaCl concentrations. Although there were no differences in the photosystem II (PSII) operating efficiency and maximum quantum yield of PSII, net CO2 assimilation rates (An) and stomatal conductance (gs) were significantly reduced at 200 and 400 mM NaCl solutions compared to the control. At 400 mM NaCl solution, bulb diameter and weight significantly decreased at the end of the experiment. These results suggest that bulb growth inhibition could be attributed to limiting photosynthetic rate and stem growth. This finding suggests that salinity mitigation is necessary to maintain plant growth and photosynthetic capacity in lily cultivation on salt-affected soils.
We examine a single machine scheduling problem with step-improving jobs in which job processing times decrease step-wisely over time according to their starting times. The objective is to minimize total completion time which is defined as the sum of completion times of jobs. The total completion time is frequently considered as an objective because it is highly related to the total time spent by jobs in the system as well as work-in-progress. Many applications of this problem can be observed in the real world such as data gathering networks, system upgrades or technological shock, and production lines operated with part-time workers in each shift. Our goal is to develop a scheduling algorithm that can provide an optimal solution. For this, we present an efficient branch and bound algorithm with an assignment-based node design and tight lower bounds that can prune branch and bound nodes at early stages and accordingly reduce the computation time. In numerical experiments well designed to consider various scenarios, it is shown that the proposed algorithm outperforms the existing method and can solve practical problems within reasonable computation time.
Fluorescent bacteria were isolated from sporocarps that browned into various mushrooms during survey at places of the production in Korea. We examined the pathogenicity, biodiversity, and genetic characteristics of the 19 strains identified as Pseudomonas tolaasii by sequence analysis of 16S rRNA and White Line Assay. The results emphasize the importance of rpoB gene system, fatty acid profiles, specific and sensitive PCR assays, and lipopeptide detection for the identification of P. tolaasii. As a result of these various analyses, 17 strains (CHM03~CHM19) were identified as P. tolaasii. The phylogenetic analysis based on the 16S rRNA gene showed that all strains were clustered closest to P. tolaasii lineage, two strains (CHM01, CHM02) were not identified as P. tolaasii and have completely different genetic characteristics as a result of fatty acids profile, specific and sensitive PCR, lipopetide detection, rpoB sequence and REP-PCR analysis. Pathogenicity tests showed 17 strains produce severe brown discolouration symptoms to button mushrooms and watersoaking of sporophore tissue within three days after inoculation. But two strains did not produce discolouration symptoms. Therefore, these two strains will be further investigated for correct species identification by different biological and molecular characteristics.
수염풍뎅이(Polyphylla laticollis manchurica)는 과거에는 흔히 발견되었으나, 1970년대 이후 한반도 내 개체수 가 급격히 감소하여 2005년 환경부에 의해 멸종위기 야생생물 Ⅰ급으로 지정되었다. 또한 해당종의 분자생물학적 연구는 멸종위기종이라는 특성으로 인해 제한적으로 진행되었다. 그로 인해 NCBI 등 공공 데이터베이스에서 제공되는 서열정보들 또한 부족한 실정이다. 이 연구는 이러한 한계를 극복하고 수염풍뎅이의 유전적 특성을 규명하기 위해 생물정보학적 기술을 활용하여 전사체 분석을 진행하였다. Illumina HiSeq 2500 플랫폼을 사용하여 53,433,048개의 RNA reads를 얻었으며, Trinity와 TGICL을 이용한 De novo 어셈블리 분석을 통해 18,172개의 unigenes를 생성하였다. 생성된 unigenes는 GO, KOG, KEGG, PANM DB를 활용하여 annotation을 진행하였다. 그 결과, GO 분석에서는 ‘binding and catalytic activities’와 관련된 항목이 높은 발현을 보였으며, KOG 분석의 경우 ‘Cellular Processes and Signals’ 범주가 높은 비율을 나타내었다. KEGG 분석을 통해 2,118개의 unigenes가 metabolic 카테고리에 annotation된 것을 확인하였다. SSR 모티프 분석에서는 AT/AT (42.90%) 모티프, AAT/ATT (13.13%) 모티프 순으로 많이 나타나는 것을 확인하였다. 이 연구를 통해 분석한 결과 들을 이용하여 유전자원 및 종 정보를 실시간 제공 및 정보 공유가 가능하도록 Database 및 web-interface를 구축하 였으며, 이러한 자료들은 국내 멸종위기종인 수염풍뎅이의 고유한 유전적 특성을 발굴 및 확보할 수 있는 기반자 료로써 활용될 수 있을 것으로 사료된다.