Italian ryegrass (Lolium multiflorum Lam., IRG) is a widely cultivated winter forage crop known for its high yield and nutritional value. This study evaluated the processing characteristics and feeding performance of IRG-based pellets in Hanwoo cattle (Bos taurus coreanae) and Korean native black goats (Capra hircus). IRG was harvested at the optimal growth stage and processed into two pellet formulations: IRG ≥80% (with up to 20% soybean meal) and 100% IRG. Feeding trials were conducted under ad libitum feeding conditions. Hanwoo cattle showed higher intake of 100% IRG pellets (7.9 kg/day/head) than IRG ≥80% pellets (7.5 kg/day/head, p<0.05), with similar average daily gain (0.9 ± 0.4 kg/day/head). Conversely, black goats exhibited significantly lower intake of IRG ≥80% pellets (54.6 g/day/head) compared to 100% IRG pellets (266 g/day/head), likely due to reduced palatability associated with soybean meal inclusion. These findings suggest that IRG pellets are suitable for Hanwoo cattle, while further optimization of pellet size and formulation is required to improve acceptance in goats. Future studies should assess long-term impacts on digestion, rumen fermentation, and metabolic responses.
A 13-year-old female lion underwent a simple mastectomy for a rapidly growing abdominal mass, confirmed as mammary adenocarcinoma after histopathological examination. Mammary tumors are common in domestic cats but less frequently reported in African lions. This report presents the first documented case of mammary adenocarcinoma in an African lion in South Korea. The mass was successfully excised through stable anesthesia and surgery. This report adds to the limited literature on mammary tumors in large felids and discusses the need for tailored management strategies.
Ectopic ureter refers to a congenital anomaly in which one or both ureters do not connect to the urinary bladder at the correct anatomical site. This case report discusses the case of a 6-year-old female mixed-breed dog diagnosed with chronic urinary incontinence, systemic hypertension, pancreatitis, and sepsis resulting from an ectopic ureter. Treatment involved an initial nephro-ureterectomy to address severe pyonephrosis, followed by ureteroneocystostomy for the remaining functional kidney. Post-surgical outcomes showed notable improvements in clinical symptoms, laboratory findings, and blood pressure. This report emphasizes the need for early diagnosis and appropriate surgical treatment in cases of ectopic ureter. Additionally, it aims to present the clinical symptoms and conditions resulting from prolonged disease progression, as well as the corresponding treatment methods and prognosis.
This study investigated the seasonal variations and environmental factors influencing soil respiration in Quercus mongolica forests at three distinct sites in South Korea: Mt. Jeombongsan, Mt. Namsan, and Mt. Jirisan. Monthly soil respiration rates were measured from 2009 to 2010 using a closed chamber method, alongside assessments of soil temperature, moisture, and organic matter. Results revealed significant seasonal and spatial variability, with the highest respiration rates recorded during summer months. Soil temperature was identified as the primary driver of respiration, showing strong positive correlations across all sites (R2=0.64 - 0.88). The temperature sensitivity (Q10) values ranged from 2.7 at Mt. Namsan to 5.7 at Mt. Jeombongsan, underscoring the heightened vulnerability of cooler, high-altitude forests to warming. Soil moisture had a dual role, promoting respiration at moderate levels but inhibiting it under saturated conditions, particularly at Mt. Jirisan. Soil organic matter content exhibited an inverse relationship with respiration rates, indicating that substrate quality, rather than quantity, predominantly governs microbial activity. Plant-soil interactions, including root respiration and litterfall decomposition, further modulated respiration patterns, with site-specific differences reflecting variations in vegetation density and ecosystem structure. These findings highlight the complexity of soil carbon dynamics in temperate forests and the critical influence of environmental factors and plant-soil processes. The study provides essential insights for improving carbon cycling models and informs climate-resilient forest management strategies. Future research should prioritize long-term monitoring and experimental manipulations to better predict soil respiration under changing climatic conditions.
In this study, we have determined mitochondrial genome of Matsucoccus thunbergianae isolated in Korea. The circular mitogenome of M. thunbergianae is 15,406 bp including 13 protein-coding genes, two ribosomal RNA genes, and 22 transfer RNAs. AT ratio is 78.2%. Maximum-likelihood and Bayesian inference phylogenetic trees show that M. thunbergianae is clustered with M. matsumurae, and family Margarodidae is clustered with family Pseudococcidae with enough supportive values.