우리는 솔수염하늘소(Monochamus alternatus) 장에 존재하는 공생미생물들을 분리하였다. 그중 다양한 식물 들을 대상으로 성장 촉진 효과가 보고된 세균을 단일배양 분리하였다. 이 세균은 16S rRNA sequencing을 통하여 Enterobacter roggenkampii로 동정되었다. 우리는 분리된 E. roggenkampii에 대하여 genomic sequencing을 수행하 였고 유전학적 특성을 확인하였다. 우리는 E. roggenkampii가 식물의 성장을 촉진할 수 있는 다양한 유전자들을 가지고 있는 것을 확인하였고 그 중 IAA-Asp hydrolase 유전자를 가지고 있음을 알 수 있었다. 동시에, 분리된 E. roggenkampii와 같은 속의 세균을 대상으로 다양한 API kit와 기질 첨가 배지를 이용하여 생화학적 특성을 비교하였다. 향후 IAA-Asp 가수분해효소를 생산하는 잠재적인 식물 생장 촉진 비료 미생물로 등록하여 다양한 작물을 대상으로 생장 촉진 효과를 확인할 것이다.
최근 미디어아트와 공연예술 분야에서 예술과 기술의 융합을 활용한 다원예술의 공연들이 늘어나고 있다. 공연 자와 관객들 사이의 실시간 커뮤니케이션이 이루어지는 공연예술은 관람객들이 전시의 형태로 이를 감상하는 미 디어아트와는 달리, 작가의 의도를 공연자의 퍼포먼스와 배경, 무대장치들을 통해 간접적으로 전달하는 형태를 취한다. 본 연구는 비언어적 커뮤니케이션의 형태로 관객들의 실시간 소통이 중요한 예술공연에서, 게임엔진과 실시간 인터렉션 기술들을 접목한 공연사례들을 분석해보자 한다. 게임과 영상 분야에서 주로 사용되었던 언리 얼 엔진과 비주얼 인터렉션 기술들은 실시간 리얼타임 비주얼 출력이라는 강력한 이점으로 인해 다양한 분야에 서 폭넓게 활용되고 있고, 예술공연 분야로도 점차 확대되고 있다. 따라서 미디어아트 공연분야에서 실시간 인터 렉션 기술이 접목된 다원예술 공연들을 살펴보고 어떠한 시도와 움직임들이 있는지 살펴보고 분석해보고자 한 다. 이를 통해 미디어아트 분야 뿐만 아니라, 공연예술 및 다원예술 분야에서도 미디어아트와 실시간 인터렉션 공연을 접목시킨 다양한 형태의 예술공연들이 늘어나고 관련 제작 및 방법론 연구에 도움이 되고자 한다.
Toll and IMD pathways play an important role in producing antimicrobial peptides (AMPs) through NF-κB in insects. The functions of IκB kinase (IKK) complex regulating the NF-κB signaling cascade have not yet been investigated in Tenebrio model. Here, we identified TmIKK-β (or TmIrd5) which contains 2,112 bp encoding 703 amino acid residues. Domain analysis shows that TmIKK-β contains one Serine/Threonine protein kinases catalytic domain. Developmental expression patterns indicate that TmIKK- β gene was highly expressed in early pupal (P1) and adult (A5) stages. Tissue specific profiles show that TmIKK-β was highly expressed in the integuments in last instar larvae, and fat body and hemocytes in 5 day-old adults. TmIKK-β1 transcripts were strongly induced at 3 and 12 h-post injection of E. coli, and 3 h-post injection of S. aureus or C. albicans in hemocytes. In gut, TmIKK-β transcripts were slightly induced by E. coli (at 6, 9 and 24 h) and C. albicans (at 24 h), while it was not induced by S. aureus challenge. Moreover, it was highly induced at 6 h-post injection of E. coli and then it was gradually decreased in the fat body. To understand the immunological role of TmIKK-β, gene specific RNAi and mortality assay was performed. Depletion of TmIKK-β mRNA leads to increase microbial susceptibility of larvae against E. coli, S. aureus and C. albicans. In addition, induction patterns of fourteen AMP genes in response to microbial challenge was tissue specifically investigated in TmIKK-β–silenced T. molitor larvae. The results suggest that expression of ten AMP genes out of fourteen genes were drastically decreased by TmIKK-β RNAi in fat body, suggesting that TmIKK-β plays an important role in antimicrobial innate immune responses.
Autophagy is an important self-eating process to eliminate damaged or unused organelles. We identified nine autophagy-related genes (Atg) including AaAtg-1, -3, -4b, -4d, -5, -6, -8, -12 and -13 from the Asian tiger mosquito, Aedes albopictus. Developmental expression patterns indicate that mRNA levels of AaAtg-1, -3, -4b, -4d, -5, -6, -12 and -13 were highly expressed in egg, whereas expression of AaAtg8 was high in 1stand3rdinstarlarvalstages. TissuespecificexpressionofthesegenesindicatesthatAaAtg1 was highly expressed in thorax and midgut in blood-fed adult female mosquitoes (BF), and head and thorax in sugar fed adult female mosquitoes (SF). Transcript level of AaAtg3 was high in thorax in BF, but head, thorax and Malpighian tubules in SF. AaAtg4b, -4d mRNA levels were significantly high in Malpighian tubules in BF, and head in SF, respectively. AaAtg-5 and -6 transcripts were highly expressed in head in BF, and expression of AaAtg-8 was high in Malpighian tubules in BF. Levels of AaAtg-12 and -13 mRNAs were significantly high in head and midgut in BF. Induction patterns of AaAtg genes against pathogens showed that AaAtg-1, -3, -4b, -8, -12 and -13 were strongly induced at 6 h-post injection of S. aureus, and mRNA levels of AaAtg-1, -3 and -13 were significantly induced by E. coli challenge after 3 h-post injection in SF abdominal carcass. In SF midgut, AaAtg-1, -3, -4b, -4d, -5, -6, -12 and -13 transcripts were drastically induced at 9 h-injection of E. coli and S. aureus, while expression of AaAtg-8 was highly induced by S. aureus and C. albicans at 9 h-post injection. Each AaAtg gene was slightly induced by E. coli, S. aureus or C. albicans at different time points in abdominal carcass in BF. Interestingly, AaAtg-8 was not induced by microbial challenge. While eight other Atg genes except AaAtg-8 were highly influenced by S. aureus at 6 and 9 h-post injection, E. coli at 3 h-post-treatment, and 3, 6, and 9 h-post inoculation. In the future, we will characterize the functional roles of autophagy during mosquito-microbes interaction.
It has been well known that IKK-β, -ε and –γ play a pivotal role in IMD pathway. In this study, TmIKK-ε was identified and their functions in countering pathogenic infections were investigated. We identified TmIKK-ε gene which including 2,196 bp nucleotides (encoding 731 amino acid residues). Domain analysis of TmIKK-ε indicates that there is one Serine/Threonine protein kinases catalytic domain. TmIKK-ε gene was highly expressed in 2 day-old pupal stage and the expression was gradually decreased until 1 day-old adults. Then the expression was slightly increased until 4 day-old adult stage. Tissue specific expression of TmIKK-ε mRNA was high in the gut, integuments and hemocytes in last instar larvae, and fat body, Malpighian tubules and testis in 5-daysold adult. In hemocytes, TmIKK-ε was drastically induced by E. coli injection after 3 h and by S. aureus at 3 and 12 h-post injection. In gut, expression level of TmIKK-ε was high at 6 h-post injection of microbial injection. Expression of TmIKK-ε in fat body was drastically induced by E. coli at 3 and 24 h-post injection while it was not significantly induced by S. aureus and C. albicans. To understand the immunological role of TmIKK-ε, gene specific RNAi and mortality assay were performed. TmIKK-ε RNAi caused increased larval mortality against E. coli, not S. aureus and C. albicans. Finally, to investigate the induction patterns of Tenebrio fourteen AMP genes in response TmIKK-ε RNAi, three microorganisms were treated into TmIKK-ε-silenced T. molitor larvae. Nine out of fourteen AMP genes were not induced by microbial challenge in TmIKK-β dsRNA-injected group. Taken together, our results indicate that TmIKK-ε may regulates nine antimicrobial peptide genes in response to microbial challenge in T. molitor fat body.
Host defense against pathogen invasion highly relies on immune defense machinery that is controlled by the nuclear factor-κB (NF-κB) of transcription factors. The Toll pathway are well known as an insect innate immune mechanism to protect host itself from invaded pathogens. Basically, in the edible insect, Tenebrio molitor, the Toll pathway is primarily activated by polymeric Lys-type peptidoglycans (PGNs), and components of fungal cell walls, β-1,3-glucan. Based on the current studies, the tremendous study has been focused on recognition and subsequent activation of spätzle in haemolymph, hence, there is a grave gap for intracellular event. Herein, in order to understand intracellular event of Toll signaling pathway, the Dorsal gene were identified. Moreover, domain analyses of TmDorsal2 gene indicate that there are two major domains such as Rel homology domain (RHD), ig-like, plexins, and transcription factors (IPT) domains. Based on the achieved results, TmDorsal2 mRNA was highly expressed in 1-day old pupa. Furthermore, TmDorsal2 was highly expressed in Malpighian tubules and fat body in last instar larvae (LL), and likewise mainly expressed in Malpighian tubules during adult 5-day old period, also the lowest expression of TmDorsal2 was observed in gonads. Moreover, TmDorsal2 mRNA levels after infection with E. coli appreciably went up at 6 and 9h time points. To investigate the effects of TmDorsal2 RNAi on larval susceptibility against various pathogens namely E. coli, S. aureus or C.albicans, dsRNA of TmDorsal2 has been synthesized the larvae dissected after 24h. As a result, TmAttacin1a, 1b and 2, TmDefencine1 and 2, TmTenecin1, 2, 3 and 4, TmCecropin2, TmColeoptericin1 and 2, Thaumatin-like protein 1 and 2 markedly reduced in the gut after injecting all mentioned microbes. In contrast, TmTenecin 2, Thaumatin-like protein 1 and 2 strikingly increased after microbe injection in the fat body. Interestingly, the most AMPs gene expression in whole body experimental case were upregulated. On the horizon, we will investigate effects of TmDorsal1 RNAi on larval susceptibility against various pathogens. Taken together, our studies may aid to understand insect innate immunity.
The purpose of this study is to observe the effect of elasticity of taping on ankle muscles’activity and endurance after plyometric training that easily causes ankle injury, and provide baseline data for physical therapy intervention methods. The study subjects are 24 male students in their 20s who attend N University in Choongnam. They were divided into three groups; 8 subjects in the elastic taping group, 8 in the non-elastic taping group, and 8 in the non-taping group(control group). They had plyometric training for 6 weeks. After the training, this study measured their maximum voluntary isometric contraction(MVIC) and muscle endurance of the muscles around ankle joint. The experiment result is as follows. After the training, all three groups showed improvement in muscle strength and endurance. The elastic taping group showed insignificant improvement in muscle strength but significant increase in muscle endurance in plantarflexion. In dorsiflexion, both muscle strength and endurance increased significantly. The non-elastic taping group showed insignificant improvement in muscle strength but significant increase in muscle endurance in plantarflexion. Taping during plyometric training had a little or insignificant effect on muscle endurance and strength compared to the non-taping group.
The green pale plant bug, Apolygus spinolae was one of the main insect pests that damaged leaves and fruit in grapes and its damage status was firstly reported in 2000 in grape orchards. This research was conducted to evaluate the distribution and difference in damage rate depending in management type of grapevine orchards (domestic sale farm vs export farm) in the export complex area of Korea (Hwangsung in Gyeonggii, Sangju and Yeongcheon in Gyeongbuk, Namwon in Junbuk and Yeongdong in Chungbuk) from 2010 to 2012. Damage by A. spinolae occurred in all 62 survey farms and damage rate differed depending on locality and individual farms in the same area. Damage rate was lower in export farms than in domestic sale farms, and damage rate of leaves was highly correlated with damage rate of new shoots. 15 species of hemipteran insect were attracted to sticky traps and A. spinolae was the dominant species. The attracted number of A. spinolae in the sticky traps differed depending on locality, and more occurred in domestic sale farms than expert farms. A. spinolae was continually attracted to sticky traps in the harvest period in grapevine orchards.
This report is a part of research on pests occurring in grapevine orchards in export complexes (Hwangsung in Gyeonggi, Sangju and Yeongcheon in Gyeongbuk, Namwon in Junbuk and Yeongdong in Chungbuk) from 2010 to 2012. This research was conducted to evaluate the distribution and difference in damage rates depending on management types of grapevine orchards (domestic sale farm vs. export farm). Damage by Arbordia spp. occurred only in 2010 and differed depending on localities and individual farms in the same area. Numbers of orchards damaged by Arbordia spp. were one, two and four in Hwasung, Namwon and Sangju, respectively, and the damage rate was below 6.2%. There was no damage in the orchards in 2011 and 2012, however, Arbordia spp. were collected on sticky traps in the orchards. A. nigrigena and A. kakogawana were the dominant species in Yeongcheon and Yeongdong, respectively, in 2011. A. kakogawana, A. maculifrons and A. nigrigena were collected on sticky traps in 2012. Collected numbers of Arbordia spp. were different depending on localities and management types of the orchards (domestic sale vs. export). A. kakogawana was the dominant species in all the survey sites and the densities were higher in the domestic sale farms than in the export farms.