A new variety of Alfalfa (Medicago sativa L.), named 'Alfaking' was developed between 2015 and 2023 at the Grassland and Forages Division, National Institute of Animal Science, Rural Development Administration, Cheonan, Republic of Korea. The variety was produced through artificial hybridization, with ‘Paravivo’ serving as the maternal line and ‘WL514’ as the paternal line. ‘Alfaking’ underwent field tests across four regions (Cheonan, Pyeongchang, Jeongeup, and Jinju) to evaluate its agronomic characteristics and forage production over two years (2022-2023). The dry matter yield of ‘Alfaking’ reached 22,516 kg/ha, which is 11% higher than the control variety, ‘Vernal.’ ‘Alfaking’ exhibited 2.1% higher crude protein content than ‘Vernal’ in forage nutritive value. The development of this new alfalfa variety, which exhibits excellent adaptability to challenging environmental conditions, is expected to enhance forage cultivation and productivity in Korea.
This study analyzes the characteristics of the Angbu-ilgu, a Korean sundial resembling a concave hemisphere, which was crafted in 1434 during the sixteenth reign of King Sejong (r. 1418–1450) of the Joseon Dynasty, although no remains of it exist today. We draw upon historical documents, such as the Sejong-Sillok (Veritable Records of King Sejong), Donggyeong-Jiji (Chorography of the Joseon Dynasty), and Yuanshi (History of the Yuan Dynasty), as well as related extant relics. The primary features of King Sejong’s Angbu-ilgu were as follows. First, celestial-circumference degrees were intricately engraved along the meridian line. Second, 12 double-hours were represented by images corresponding to their respective animal divinities. Third, a plate was affixed to the end of the gnomon, which stood perpendicular to the alidade, serving as a handle, rotated along two axes, and included a pinhole. Fourth, the diameter of the hemisphere measured 414 mm, approximately 1.5–2.1 times larger than extant Angbu-ilgu relics. Finally, four pillars supporting the Angbu-ilgu were positioned at four cardinal points. In conclusion, this study holds significance for restoring the Angbu-ilgu from the era of King Sejong.
In this study, we explore and catalog Korean astronomical heritages that are known to be preserved in foreign countries. We exclude old astronomical books from the catalog because they have been well studied and exist in numbers far too large for the scope of this study. From various documents and online collections, we find a total of 38 Korean astronomical heritages in six countries: 10, 11, and 14 items from the UK, France, and Japan, respectively, and 1 item from Germany, the US, and China each. These include items that are suspected to be of Chinese heritage and items of unconfirmed possession status. We divide the astronomical heritages primarily into two groups: time-keeping instruments (18 items) and astronomical charts (20 items). In this paper, we briefly review them according to country. We believe that this study provides a foundation for further detailed studies on each item, such as the Gujang-Cheonsang-Yeolcha-Bunya-Jido (舊藏天象列次分野之圖) preserved in the Library of Congress, United States.
We investigate the astronomical phenomenon records of Sukjong’s 𝐶ℎ𝑢𝑛𝑏𝑎𝑛𝑔-𝐼𝑙𝑔𝑖 made by 𝑆𝑖𝑔𝑎𝑛𝑔𝑤𝑜𝑛 (Royal Educational Office of the Crown Prince) at which King Sukjong was the crown prince (i.e., 1667 January 24–1674 September 22). From the daily records of 2,799 days, we extract the astronomical records of 1,443 days and classify them into 14 categories. Then, we group the records of each category into five phenomena (Atmosphere, Eclipse, Daylight Appearance, Apparition, and Appulse) and compare them with the results of modern astronomical computations wherever possible. Except for Atmosphere group comprising records of meteorological events, such as solar halo, lunar halo, and unusual clouds, the significant findings in every other group are as follows: In Eclipse group, the solar eclipse that occurred on 1673 August 12 was unobservable in Korea, which is in contrast to the record of 𝐽𝑜𝑠𝑒𝑜𝑛𝑤𝑎𝑛𝑔 𝑗𝑜-𝑆𝑖𝑙𝑙𝑜𝑘 (Annals of the Joseon Dynasty), which states that the sun was in eclipse around sunset time, as observed at 𝑁𝑎𝑚 mountain. From the lunar eclipse records, we verify that the Joseon court did not change the date of the events observed after midnight. In Daylight Appearance group, we confirm that this phenomenon was observed during the daytime and not during twilight. We further suggest that if observation conditions are met, a celestial body brighter than −2.3 mag could be seen during the daytime with the naked-eye. In Apparition group, we find the possibilities that the Orionid meteor shower had influence on the meteor records and the seasonality on the aurora records. We also find that the Korean records in which the coma of comet C/1668 E1 was located below the horizon were overlooked in previous studies. Finally, we find that the records of Appulse group generally agree with the results of modern calculations. The records of 𝐵𝑒𝑜𝑚 (trespass in literal) and 𝑆𝑖𝑘 (eating in literal) events show average angular separations of 1.2◦ and 1.0◦, respectively. In conclusion, we believe this work helps study the astronomical records of other logs of 𝑆𝑖𝑔𝑎𝑛𝑔𝑤𝑜𝑛, such as Sunjong’s 𝐶ℎ𝑢𝑛𝑏𝑎𝑛𝑔-𝐼𝑙𝑔𝑖.
We investigated the records of astronomical phenomena in the Hyeonjong-Donggung-Ilgi written by the educational office for a crown prince, Sigang-won, during the time of a crown prince of the king Hyeonjong (i.e., from 1649 to 1659). Of the total of 3,625 days, 3,044 astronomical accounts were compiled from astronomical records of 2,003 days. We classified these astronomical accounts into 16 items, grouped into five categories, and statistically analyzed each group. In our analysis, the accounts for atmospheric optical phenomena equates to 57.9% of the total, and for celestial phenomena visible during the daytime the percentage is 17.3%. The records related to the approach between two objects such as planets, moon, and stars account for 3.3%, and solar or lunar eclipses take up 0.6%. The ratio of accounts regarding meteor, comet, and fire light (火光) stand at 13.8%, 0.30%, and 6.8%, respectively. Sunny days account for 71.1% of all days per year during this period. We determined that the distribution of the fire light by month is similar to that of the solar halo. We also found that the astronomical records from the Annals of the Joseon Dynasty correspond to only 30% of those of the Hyeonjong-Donggung-Ilgi for the same period. In particular, the phenomena of celestial objects occurring outside the atmosphere are transmitted to the Annals of the Joseon Dynasty in a higher proportion than the phenomena inside the air. It is therefore necessary to use a historical diary like a Donggung-Ilgi to interpret the phenomena in the air such as atmospheric optical events, meteor, and fire light.
Fescues, which are widely cultivated as grasses and forages around the world, are often naturally infected with the endophyte, Epichloë. This fungus, transmitted through seeds, imparts resistance to drying and herbivorous insects in its host without causing any external damage, thereby contributing to the adaptation of the host to the environment and maintaining a symbiosis. However, some endophytes, such as E. coenophialum synthesize ergovaline or lolitrem B, which accumulate in the plant and impart anti-mammalian properties. For example, when livestock consume excessive amounts of grass containing toxic endophytes, problems associated with neuromuscular abnormalities, such as convulsions, paralysis, high fever, decreased milk production, reproductive disorders, and even death, can occur. Therefore, pre-inoculation with non-toxic endogenous fungi or management with endophyte-free grass is important in preventing damage to livestock and producing high-quality forage. To date, the diagnosis of endophytes has been mainly performed by observation under a microscope following staining, or by performing an immune blot assay using a monoclonal antibody. Recently, the polymerase chain reaction (PCR)-based molecular diagnostic method is gaining importance in the fields of agriculture, livestock, and healthcare given the method’s advantages. These include faster results, with greater accuracy and sensitivity than those obtained using conventional diagnostic methods. For the diagnosis of endophytes, the nested PCR method is the only available option developed; however, it is limited by the fact that the level of toxic alkaloid synthesis cannot be estimated. Therefore, in this study, we aimed to develop a triplex real-time PCR diagnostic method that can determine the presence or absence of endophyte infection using DNA extracted from seeds within 1 h, while simultaneously detecting easD and LtmC genes, which are related to toxic alkaloid synthesis. This new method was then also applied to real field samples.
We analyzed the records on the reign style and the calendrical data presented in the Samguksagi (History of the Three Kingdoms) and the epigraph of the Three Kingdoms (Silla, Goguryeo, and Baekje) period in Korea (B.C. 57 – A.D. 935) to verify the chronological tables of the period that are currently in use. For the epigraph of the Three Kingdoms of Korea, we utilized the database provided by the National Research Institute of Cultural Heritage. By analyzing the records on the reign style, first, we found that the Yeonpyo (Chronological Table) of the Samguksagi is tabularized using the reign style of the Caowei for the period of Three Kingdoms of China (Caowei, Shuhan, and Sunwu) (A.D. 220 – 280). Second, we found that the reign style of the Silla was promulgated during the reign period of a king, which was usually promulgated when a king acceded in China. Third, we found that the reign styles presented in historical materials showed agreement with those of the Yeonpyo except for two cases in the Goguryeo. Concerning the records on the calendrical data, first, we confirmed that accession years of kings Michu, Beobheung, Seondeok, Minae, Gyeongmun, and Seongdeok. On the other hand, we found probable errors in the record of accession years for the kings Munja, Wideok, Aejang, and Heonan. Next, we found that the records of the length of a lunar month, leap month, and cyclic day showed agreement with the current chronological table except for several cases. In particular, cyclic days in the solar eclipse account had a relatively large number of discrepancies. We believe that these errors might have been caused by the inaccurate identification of a year in the records of the Three Kingdoms while determining the year by referring to Chinese historical documents. Finally, we found that the starting point was included while counting a year, at least from the Three Kingdoms period, similar to the current method of counting age in Korea. However, we point out that the starting point should be excluded when the term “after” is used in the expression. We believe that this study is very useful to verify the current chronological table of the Three Kingdoms period in Korea.
Korea has numerous astronomical resources, such as observational records, star maps, and a wealth of literature, covering the period from the Three Kingdoms (54 BC - 932 AD) to the Joseon Dynasty (1392 - 1910 AD). The research activities related to these resources have been limited to those by individual researchers. It is now necessary to conduct research by efficiently and systematically collecting and managing Korean astronomical records using an accessible Web environment. The purpose of this study is to complete a system that enables researchers systematically to collect and verify a large number of historical records related to astronomical phenomena in a Web environment. In 2017, a preliminary survey was conducted, and the requirements pertaining to an implementation target system were devised. In addition, a joint development plan was carried out by the developer, lasting three months in 2018. Although the system is relatively simple, it is the first system to be attempted in the historical astronomy field. In order to proceed with the systematic development, the software development methodology is applied to the entire process from deriving the requirements of researchers to completing the system. The completed system is verified through integrated function and performance tests. The functional test is repeated while modifying and testing the system based on various test scenarios. The performance test uses a performance measurement test tool that takes measurements by setting up a virtual operation environment. The developed system is now in normal operation after a one-year trial period. Researchers who become authorized to use the system can use it to verify the accuracy of data and to suggest improvements. The collected feedback will be reflected in future systems, and Korean astronomical records will be available for use internationally through a multilingual service.
We report a calendar sheet for the 31st year of the reign of King Gojong (1894) (hereafter, calendar sheet 1894) in Korea, which calendrical data in a single page. This calendar sheet 1894 is composed of 14 rows by 14 columns (about 190 cells), and various calendrical data are recorded such as the sexagenary circle of the first day in each month, 24 solar terms, full moon day. In this paper, we compare calendrical data of 1894 calendar sheet with those of the almanac based on the Shixian calendar (hereafter, annual almanac) of the same year. Our findings are as follows. First, we find that the year is expressed using the reign-year of the king of the Joseon dynasty differently from using the reign-style of China in the annual almanac those times. Other calendar days of this calendar sheet are the same as those of the annual almanac in term of lunar dates, 24 solar terms, sexagenary days and so forth. Second, we find that the calendar sheet 1894 contains memorial days for 64 lineally ancestors of the Joseon royal family. These royal memorial days appears in the annual almanac two years later (i.e., 1896). Third, as the most distinctive feature, we find that the symbol of 工 kept every two cells. It was found that the cells can be filled with three days as the maximum number of days and then are labelled the same symbol 工 every second cell. This feature allows us to get the first year in which this kind of calendar sheet was published. It is conjectured one of 11 years, such as 1845, 1846, 1847, 1873, 1874, 1875, 1876, 1877, 1878, 1879 or 1880. We also think that the format of the calendar sheet 1894 has influenced on the Daehan-Minryeok (Korean civil calendar sheet) of 1920.
Glutathione S-transferase (GST) is a key gene involved in multiple stress tolerance in all living organisms, though it is still to be disclosed the gene function in teff grass [Eragrostis tef (Zucc.)Trotter].The objectives of this study were to clone and molecular characterization of GST gene in teff grass. We characterized GST1 from teff grass (EtGST1), it composed of a 645-bp open reading frame (ORF) that encoded 195 amino acid residue. Further, we transformed EtGST1 in E.coli BL21 (DE3) cells. This recombinant EtGST1 in E.coli BL21(DE3) induced at 37°C temperature. In addition, Growth of cells overexpressing EtGST1 rapidly increased in the presence of polyethylene glycol (5%), heat (46°C), NaCl (0.6%), and arsenic (1 mM) than that of cells harboring an empty vector. These results suggest that EtGST1 would be suitable candidate for improving tolerance in forages and/or grasses species against multiple abiotic stresses.
We analyze the time data recorded in Korean astronomical almanacs for the years from 1913 to 1945, which belong to the period in which Japan occupied Korea (1910--1945). These almanacs, published by Japanese scholars, differ from previous almanacs in terms of organization, content, and calendrical methods. In this study, we first extract twelve kinds of time data from the almanacs at the following times: solar terms, rising and setting of the Sun and Moon, transit of the Sun, phases of the Moon (i.e., new Moon, first quarter Moon, full Moon, and last quarter Moon), and eclipses of the Sun and Moon. Then, we compare the time data with that obtained from modern calculations. Even though all time data in the almanacs are tabulated in units of minutes, we calculate the data in units of seconds and determine the root mean square (RMS) deviation values for each kind of time data to estimate the accuracy of the data. Our findings are as follows: First, the kind and tabulation method of time data changes several times. For instance, solar transit time is listed only for six years from 1937 to 1942. Second, the times of two equinoxes and those of a new Moon are considerably close to midnight. Third, there are some typographical errors in the almanacs, particularly in the times of moonrise and moonset. Fourth, the contact times for lunar eclipses represent the times of the umbra and not of the penumbra, which is different from the times for solar eclipses. Finally, the RMS deviation values are approximately 0.5 min on average in all kinds of time data, even though they show slightly large differences in the times related to the Moon. In conclusion, we believe that this study is useful for investigating the time data in the almanacs of other East Asian countries that were published during the same period, such as China, Japan, and Manchuria.
The life and astronomical activity of Lee Deok-Seong (李德星, 1720-1794) was studied using various historical sources, including the astronomical almanac, Seungjeongwon-Ilgi (Daily records of Royal Secretariat of Joseon dynasty), and the Gwansang-Gam’s logbooks during Joseon dynasty (A.D. 1392– 1910). We present the results of the study including the following main findings. First, from the investigation of Lee’s family tree, we find that a number of his relatives were also astronomers, notably Samryeok-Gwan (三曆官, the post of calendrical calculation). Second, we find that he took part in the compilation of an annual astronomical almanac over a period of at least 16 years. His major achievements in the astronomy of the Joseon dynasty were to establish a new method of calendar-making calculation and to bring astronomical materials to the Joseon court through a visit to China. The Joseon dynasty enforced the Shixianli (時憲曆, a Chinese calendar made by Adam Shall) in 1654 without fully understanding the calendar. So an astronomer and an envoy were dispatched to China in order to master the intricacies of the calendar and to learn as much of Western science as was available in that time and place. Lee Deok-Seong worked at the Gwansang-Gam (觀象監, Royal Astronomical Bureau) during the reigns of King Yeongjo (英祖) and Jeongjo (正祖). As best as we can ascertain in relation with the calculations in the Shixian calendar, Lee visited China four times. During his trips and interactions, he learned a new method for calendar-making calculations, and introduced many Western-Chinese astronomical books to Joseon academia. Lee greatly improved the accuracy of calendrical calculations, even while simplifying the calculation process. With these achievements, he finally was promoted to the title of Sungrok-Daebu (崇祿 大夫), the third highest grade of royal official. In conclusion, history demonstrates that Lee Deok-Seong was one of the most outstanding astronomers in the late-Joseon dynasty.
Arabidopsis nucleoside diphosphate kinase 2 (AtNDPK2) is an upstream signaling molecule that has been shown to induce stress tolerance in plants. In this study, the AtNDPK2 gene, under the control of a stress-inducible SWPA2 promoter, was introduced into the genome of tall fescue (Festuca arundinacea Schreb.) plants. The induction of the transgene expression mediated by methyl viologen (MV) and NaCl treatments were confirmed by RT-PCR and northern blot analysis, respectively. Under salt stress treatment, the transgenic tall fescue plants (SN) exhibited lower level of H2O2 and lipid peroxidation accumulations than the non-transgenic (NT) plants. The transgenic tall fescue plants also showed higher level of NDPK enzyme activity compared to NT plants. The SN plants were survived at 300 mM NaCl treatment, whereas the NT plants were severely affected. These results indicate that stress-inducible overexpression of AtNDPK2 might efficiently confer the salt stress tolerance in tall fescue plants.
We investigate the records related to the reign style and the calendar day from the epigraphs of the Goryeo dynasty (918 - 1392) in Korea in order to verify and supplement the sexagenary cycle data of the first day in the lunar month of the dynasty. The database of the National Research Institute of Culture Heritage contains a rubbed-copy image, transcription statement, and translation statement for Korean epigraphs as well as 775 epigraphs corresponding to the Goryeo dynasty. The epigraph records are valuable in that, during this time, they were written differently from other historical literature such as the Goryeosa (History of the Goryeo Dynasty), which was compiled in the next dynasty. We find that the Goryeo dynasty, in general, had adopted the reign styles of Chinese dynasties at that time. We also find 159 calendar day records all showing good agreement with the work of Ahn et al. except for dozens of records. Through this study, we can verify the reign styles and the calendar days of the Goryeo dynasty.
The present research investigated copper and cadmium stress-induced differentially expressed genes (DEGs) using annealing control primers (ACP) with the differential display reverse transcription polymerase chain reaction technique in alfalfa (Medicago sativa L. cv. Vernal) leaves. Alfalfa leaves were subjected to 250 μM of copper and cadmium treatment for a period of 6 h. A total of 120 ACPs was used. During copper and cadmium treatment, 6 DEGs were found to be up or down regulated. During copper stress treatment, 1 DEG was up-regulated, and 3 novel genes were discovered. Similarly, during cadmium stress treatment, 1 DEG was up-regulated and 5 novel genes were identified. Among all 6 DEGs, DEG-4 was identified as the gene for trans-2,3-enoyl-CoA reductase, DEG-5 was identified as the gene for senescence-associated protein DIN1 and DEG-6 was identified for caffeic acid O-methyltransferase. All the up-regulated genes may play a role in copper and cadmium stress tolerance in alfalfa.
Sambok (三伏, Three Hottest Days) is the common designation of Chobok (初伏, Early Hot Day), Jungbok (中伏, Middle Hot Day), and Malbok (末伏, Late Hot Day), and widely known to be one of the Korean folk customs. Hence, Sambok is notated in Manseryeok (Ten Thousand-Year Almanac) and in the annual astronomical almanac published by Korea Astronomy and Space Science Institute. In this paper, we investigate the changes of Sambok in Korea based on various documents such as Joseonwangjosilok (朝鮮 王朝實錄, Annals of the Joseon Dynasty), Jeungbo-Jakryeoksik (增補作曆式, The Supplement of Manual for Calendar Making), astronomical almanacs, and so forth. According to Jeungbo-Jakryeoksik preserved in Kyujanggak Institute for Korean Studies, Chobok and Jungbok are defined as the third and fourth Gyeongil (庚日, The Day Starting with the Seventh Heavenly Stems in Sexagenary Cycles Assigned to Each Day) after the summer solstice, respectively, and Malbok is the first Gyeongil after Ipchu (Enthronement of Autumn). However, if the summer solstice is Gyeongil, then the third Gyeongil counting from the solstice becomes Chobok. Malbok depends on the time of Ipchu. Ipchu itself becomes Malbok if the time of Ipchu is in the morning, or next Gyeongil becomes Malbok if it is the afternoon. On the other hand, Malbok is defined as Ipchu itself regardless of its time according to Chiljeongbobeob (七政步法, Calculating Method for Sun, Moon, and Five Planets), Chubocheobryeo (推步捷例, Quick Examples for Calendrical Calculations), and so on. To verify the methods used to determine Sambok, we examined the record in the extant almanacs during the period of 1392 to 2100 for which the summer solstice or Ipchu is Gyeongil. As a result, we found a periodicity that if the time of Ipchu is in the morning, in general, the time is in the afternoon after two years and then is back into in the morning after nineteen years, i.e., the 2 + 19 years periodicity. However, we found the 2 + 17 years periodicity in some years. We also found that the Chobok method of Jeungbo-Jakryeoksik has been used since 1712, the thirty-eighth reign of King Sukjong (肅宗). In addition, we supposed that Malbok had been determined by the method like Chubocheobryeo since either 1846, the twelfth reign of King Heonjong (憲宗), or 1867, the fourth reign of King Gojong (高宗). At present, these methods of Sambok are customarily used without any legal basis. We, therefore, think that this study will help conventionalize the method defining Sambok in the future.
Gyupyo (圭表, Gnomon) consists of Gyu (圭, Measuring Scale) and Pyo (表, Column), and was one of the traditional astronomical instruments in East Asia. Daegyupyo (Large Gnomon) was manufactured in the Joseon dynasty around 1434 ~ 1435. To increase the measurement accuracy, it was equipped with a Hoengyang (橫梁, Cross-bar) and used a Youngbu (影符, Shadow-Definer) which was invented during the Yuan dynasty (1271 ~ 1368). The cross-bar was installed on the top of the column and this structure was called Eol (臬). In addition, three plumbs hanging from the cross-bar was employed to vertically built Eol on the measuring scale. This method was also used to not only check the vertical of Eol but also diagnose the horizontal of the cross-bar. Throughout this study, we found that a cross-bar in a gnomon has played three important roles; measurement of the shadow length made by the central part of the Sun, increase of the measurement precision using the shadow-definer, and diagnosis of the vertical of Eol and the horizontal of the cross-bar itself using the three plumbs. Hence, it can be evaluated that the employment of a cross-bar and a shadow-definer in a gnomon was a high technology in the contemporary times. In conclusion, we think that this study is helpful for understanding the Large Gnomon of the Joseon dynasty.
This study examined the growth performance and field evaluation of the dual herbicide-resistant transgenic creeping bentgrass plants. The effect of glyphosate treatment on the herbicide resistance of the transgenic creeping bentgrass plants was determined, and the non-transgenic control plant withered at the concentration 11 μg/mL or higher whereas the transgenic creeping bentgrass plants survived the treatment at the concentration of 3,000 μg/mL, and the increase of the plant length was repressed as the glyphosate treatment concentration was increased. At field evaluation, glufosinate-ammonium and glyphosate were simultaneously treated to investigate the weed control effect. The results showed that more than 90% of the weeds withered four week after herbicide treatment, while the transgenic creeping bentgrass plants continued to grow normally. Therefore, the dual herbicideresistant creeping bentgrass plants may be able to greatly contribute to the efficiency of weed control and to the economic feasibility of mowing in places such as golf courses.
Astronomical data making such as forming a calendar, period of day, determining the time of rising/setting of the sun and the onset of twilight are essential in our daily lives. Knowing the calendar day of the past is particularly crucial for studying the history of a clan or a nation. To verify previous studies in the calendar day of the Joseon dynasty (1392 – 1910), we investigate the sexagenary cycle of the new moon day (i.e., the first day in a lunar month) by using sources such as results of the calculations using the Datong calendar (a Chinese Calendar of the Ming Dynasty) and the data of Baekjungryeok (a Perpetual Calendar; literally, a one hundred-year almanac). Compared with the study of Ahn et al., we find that as many as 17 sexagenary cycles show discrepancies. In the cases of nine discrepancies, we find that the sexagenary cycles of this study are identical to those of the almanacs at that time. In addition, we study five sexagenary cycles by using the historical accounts of Joseon Wangjo Sillok (Annals of the Joseon Dynasty), Seungjeongwon Ilgi (Daily Reports of Royal Secretariat), Chungung Ilgi (Logs of Crown Prince), and so forth. For the remaining discrepancies, we present historical literature supporting the results of this study. This study will greatly contribute to the identification of the lunisolar calendar days during the Joseon dynasty as the dates of the modern (i.e., Gregorian) calendar.
In this paper, we study the structure of the Daegyupyo (大圭表, Large Gnomon) of the early Joseon dynasty. A Gyupyo (圭表, Gnomon that is Guibiao as pronounced in Chinese) is composed of a Pyo (表, Biao as pronounced in Chinese) making a shadow and a Gyu (圭, Gui as pronounced in Chinese) measuring its length. It is known that the Daegyupyo with the 40-feet height was constructed between the sixteenth to seventeenth year of the King Sejong reign (1444 - 1445) on the basis of the record of Yuanshi (元史, the History of the Yuan Dynasty). By analyzing historical documents such as Joseonwangjosillok (朝鮮王朝實錄, the Annals of the Joseon Dynasty), Yuanshi, and Jegaryeoksangjip (諸家曆象集, a work written by Sunji Lee), we found a possibility that the Ji (池, a pond) on the Gyu was located in the north side of the Pyo. This structure is different from that in previous studies, but is in a good agreement with that of the 40-feet Guibiao remaining in Dengfeng (登封) of China. Regarding to the Hoengyang (橫梁, cross-bar), we suggest that it was set up by double 5-feet supporting arms apart from the north tip of the Pyo in the radial direction. The 3:4:5 ratio in a rectangular triangle was used to place the Heongyang on the top of the Pyo at a distance of 4-feet (3-feet) in the vertical (horizontal) direction. We also discuss the structural problem when the Hoengyang is positioned apart from the top of the Pyo by supporting arms. In conclusion, we think that this study should be useful in restoring the Daegyupyo of the Joseon dynasty.