검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 7

        1.
        2006.09 구독 인증기관·개인회원 무료
        New Al-based alloys with very high ultimate tensile strength were developed in high Al concentration range of 91-95 at.% for Al-Fe-Cr-Ti-M (M: Co and Mo) systems and Al-Fe-Cr-Mo-Ti-Co system by the dispersion of nanoscale quasicrystalline particles in Al phase. The effect of adding elements, M was discussed in the viewpoint of stability of super-cooled liquid state and formation ability of quasicrystalline phase. The P/M Al-Fe-Cr-Ti-M alloys with dispersed nanoscale quasicrystalline particles exhibited ultimate tensile strength of 350MPa at 573K and 200MPa at 673K.
        2.
        2006.04 구독 인증기관·개인회원 무료
        Ru-C nano-composite films were prepared by MOCVD, and their microstructures and their electrode properties for oxygen gas sensors were investigated. Deposited films contained Ru particles of 5-20 nm in diameter dispersed in amorphous C matrix. The AC conductivities associating to the interface charge transfer between Ru-C composite electrode and YSZ electrolyte were 100-1000 times higher than that of conventional paste-Pt electrodes. The emf values of the oxygen gas concentration cell constructed from the nano-composite electrodes and YSZ electrolyte showed the Nernstian theoretical values at low temperatures around 500 K. The response time of the concentration cell was 900 s at 500 K.
        4.
        1997.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Two membrane-rdated research projects are now being developed in Japan and their main target is to develop new inorganic membranes. The first project is the R & D of membranes for carbon dioxide recovery at high temperature, conducted by the Japan Fine Ceramics Center (JFCC) and Japan Fine Ceramics Association (JFCA) under the supervision by the New Energy and Industrial Technology Development Organization (NEDO). The second one is the R & D of membranes for petroleum refinery and chemical processes, conducted by the Japan High Polymer Center (JHPC) under the supervision by the Petroleum Energy Center (PEC). Cooperating with these projects researchers in many universities and research institutes have been publishing many interesting data of inorganic membranes manufactured by various methods. Many such results are summarized and reported.
        3,000원
        5.
        1991.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Since the discovery of the Loeb-Sourirajan reverse osmosis membrane, thirty years have passed and many membrane technologies and new membranes for applications have been developed in the world. In the early stage of these developments Japan has not contributed much, but from the middle of 70ties Japan has started its own R&D projects starting from the desalination technology, and now various private industries and government ministries are actively engaging in R & D of membrane technologies in Japan. In Table 1 the chronological developments of important events of developments and projects relating membrane technologies inside and outside of Japan are introduced and their details will be explained. The first membrane technology applied in the Japanese industry was a electrodialysis(ED) process using ion-exchange membranes. These membranes were first developed in early 50ties and the Japanese government decided to use this method for concentration of sea-water to produce salt, which was then produced by solar evaporation. This development program started from 1960 by the Japan Monopoly Corp.(at that time). To apply ED process for sea-water concentration it was necessary to develop ion-exchange membranes having very low electric resistance to avoid energy loss due to Joule heat, and those having selectivity to permeate single valent ions only to avoid scale formation in the ED stacks. Three Japanese companies, Asahi Glass, Asahi Chemical and Tokuyama Soda, have succeeded to develop such membranes, and until 1971 all of the seven salt manufacturing companies had adopted ED for production of food salt.
        4,000원
        6.
        2006.12 KCI 등재 서비스 종료(열람 제한)
        This paper describes the current spatial patterns of the net primary productivity (NPP) of the terrestrial vegetation and carbon emission (C) in the world due to the burning of fossil fuels in order to clarify the amount of expansion of human activity. The C/NPP value varies spatially from almost zero to several tens of thousand times the local NPP. C/NPP is higher under the condition of extensive human activities due to a high human population density or when the local NPP is extremely low in severe climatic zones. In contrast, the low C/NPP areas are distributed mainly in sparsely populated districts, leading to a low impact of human activity. Although the area where C/NPP is less than 10% accounts for about 70% of the entire land area, one-third of these areas cannot contribute to carbon absorption because of low NPP with a shortage of climatic resources. Since more than half of the areas of the remaining areas are agricultural land and forest ecosystems with high NPP, the possible afforestation area was evaluated to be maximum of 30×106 km2; here only sequestrate carbons that correspond to 2% of the global total NPP are present. These analyses revealed that presently most of the areas where the NPP is high are those exclusively used by humans and that it is difficult for large-scale forest plantations to absorb a substantial amount of the carbon emitted annually by humans.