This study investigates the factors influencing the seed longevity of Quercus myrsinifolia, a species with recalcitrant seeds highly sensitive to desiccation and freezing. The effects of moisture content, seed collection date, and storage methods on seed viability were analyzed using exponential decay modeling. Interactions between these factors were also explored to refine conservation strategies. Seeds with moisture content above 40% demonstrated a predicted seed longevity of 2.19 years, whereas those with moisture content below 30% had seed longevity of less than 1 year. Late-season seeds collected in November and December exhibited superior germination percentages and longer predicted seed longevity (1.32 years) compared to early-season seeds collected in September and October (<1 year). In seed weight, large seeds (2.0 g) showed longer predicted seed longevity about 1.5 times greater than that of small seeds (<1.2g). Storage methods significantly affected seed longevity, with refrigerator (4°C) with silica gel maintaining viability for 2–3 years, while seeds stored at room temperature (25°C) exhibited a seed longevity of less than 1 year. Silica gel was found to prevent seed deterioration due to over-desiccation, emphasizing the importance of balanced moisture regulation. Q. myrsinifolia seeds exhibited 𝑏 values ranging from 0.30 to 2.04, demonstrating a close relationship between decay constant, moisture content, storage conditions, and seed longevity. These findings provide critical insights into optimizing seed storage and propagation strategies for Q. myrsinifolia, contributing to its conservation and ecological restoration efforts.
This study investigated the morphological characteristics and regional variations of leaves, flowers, and seeds of Quercus myrsinifolia Blume to understand its ecological adaptation and the effects of environmental factors. Samples were collected from Jinju, Hapcheon, and Sancheong, and nine leaf traits, six flower traits, and five seed traits were analyzed. Significant regional variations were observed, with Hapcheon exhibiting the largest leaf and flower sizes, while Sancheong showed the largest and heaviest seeds. Jinju recorded the smallest values for most traits. Principal Component Analysis (PCA) revealed distinct regional groupings, with Hapcheon displaying intermediate traits, Sancheong larger traits, and Jinju smaller traits. Correlation analysis identified strong positive relationships between leaf length and width, seed length and weight, and the number of staminate flowers and catkin width, highlighting key indicators for growth. Climate factors such as temperature and precipitation significantly influenced morphological traits, with higher temperatures negatively affecting leaf and seed sizes, while precipitation showed a weak positive correlation with seed weight. Among soil factors, pH and magnesium content were closely related to morphological traits. pH exhibited a negative correlation with leaf length and petiole length, while magnesium showed a positive correlation with seed weight and leaf width. These findings underscore the significant role of environmental factors in morphological variation and provide valuable insights for developing regionally adaptive breeding strategies. These findings provide foundational data for developing region-specific breeding strategies and cultivars for Q. myrsinifolia, contributing to ecological management and climate change adaptation strategies.
Helicobacter pylori are known as a causative agent of gastritis, gastric duodenum and peptic ulcer, and gastric cancer, and multiple drug use is associated with various side effects in patients. The discovery of antibacterial substances against H. pylori from Korean resource plants is an important substitute for antibiotics. 52 species of Korean resource plants were collected and extracted with 50% ethanol, and antibacterial activity against H. pylori was measured using the disk diffusion method. The toxicity of plant extracts to human gastric adenocarcinoma(AGS) cells was measured by MTT assay, and the level of IL-8 secreted when gastric epithelial cells were inoculated with H. pylori was measured. As a result of measuring the antibacterial activity of H. pylori, antibacterial activity was confirmed in 38 plant extracts. The plant species with the strongest antibacterial activity were Chrysanthemum indicum, Rheum rhabarbarum, Patrinia scabiosaefolia and Petasites japonicus. C. indicum was not cytotoxic to H. pyroli-infected AGS cells and showed anti-inflammatory effects. This study's results can be used to develop healthy, functional foods and medical materials.
The chemical composition of 86 species of native plants in Korea, including plants to be afforestation, was analyzed. The chemical composition of the species analyzed was different. The species with the highest extractable content was Viburnum dilatatum (3.91%), and the species with the lowest extractable content was Ligustrum lucidum (0.11%). The lignin content ranged from 12 to 39%, with an average of 25%. The species with the highest lignin content was Chaenomeles lagenaria (39.37%). Hemicellulose content ranged from 18 to 52%, with the highest species being Thuja occidentalis (51.22%) and Eucommia ulmoides (48.84%). Cellulose content ranged from 25 to 58%, and the species with the highest content were Prunus serrulata (57.67%), Diospyros kaki (57.14%), Aesculus turbinata (53.29%), Albizia julibrissin (53.02%), and Zelkova serrata (52.29%). The chemical composition was different for each use taxon of 86 plant species. The lignin content was the highest in the fruit group and the lowest in the group other than recommended species for afforestation. Cellulose content was highest in non-reforestation-recommended tree species and lowest in fruit trees. In classification according to tree height, lignin content was higher in shrubs than in tall trees, and cellulose content was highest in tall trees. Between deciduous and evergreen trees, the lignin content was high in deciduous trees (26.46%), and the cellulose content was also high in deciduous trees (44.01%). As a result of analyzing the correlation between each compound, there was a difference. There tended to be a positive correlation between extractives and lignin content. There was a negative correlation between extractives and holocellulose content, hemicellulose and cellulose. The higher extract content affected the cellulose content much more than hemicellulose. Also, the higher the lignin content, the lower the cellulose content. The species with low lignin content and high cellulose content were Diospyros kaki and Prunus serrulata var. spontanea. This result is expected to be primary data for bioenergy, pulp industry and bioindustry.
The effect of the surrounding vegetation on the seed germination and growth of mountain-cultivated ginseng (MCG, Panax ginseng C.A. Meyer) was investigated. Seed germination rate and growth were tested for allelopathy effects on four forest tree species after treatment with fallen leaves and leaf extracts. In the case of soil treatment through fallen leaves and crushed leaves, the germination rate was lower in the Quercus myrsinifolia treatments, and the average germination time was slower when Chamaecyparis obtusa was treated. In the case of Pinus densiflora and Quercus variabilis, which are used in most of the MCG cultivation areas, they did not have a significant effect on seed germination. In the fallen leaves treatments, the stem showed a tendency to lengthen. The hot water extract treatment showed a higher germination percentage than the cold water extract treatment. The extract treatment showed a deficient germination percentage of some MCG seeds. However, in the case of the treatments except for this, the germination percentage was similar to that of the control treatment. However, the Mean Germination Time, germination rate, and germination value were faster and higher than the control treatment. As a result of calculating the allelopathic index (AI) of MCG according to the extract treatment of 4 species, most had a negative effect on germination, and P. densiflora and Q. variabilis extracts showed the most significant effect. The ginsenoside content was higher in the fallen leaves treatment than in the control. The above results will help select and manage MCG plantations.
To improve the quality of jujube (Zizyphus jujuba Miller var. hoonensis), which is a fruit of health functional, the effect of polyphenol preparation treatment on the fruit characteristics of two cultivars (cv. Bokjo and cv. Sangwang) of jujube was investigated. There was no difference in the height and breast diameter of jujubes tested between the polyphenol treatments and non treatment. Jujube trees treated with polyphenol preparation produced significantly more fruit than untreated in both cultivars. In cvultivar of Bokjo, the polyphenol preparation treatment increased the fruit's fresh weight and dry weight more than two times, respectively, compared to the untreated treatment. Polyphenol preparation tr eatments also changed the leaf characteristics of jujube trees. In the polyphenol-treated trees, leaf thickness tended to be thickest at the top and thinnest at the bottom. Polyphenol preparation treated jujube trees showed no difference in chlorophyll content. Moisture content was slightly higher in the untreatment than in the treatments. Visually, the polyphenol preparation treatment had a dark green color. Jujubes treated with polyphenol preparations showed differences in polyphenol content in fruits. The polyphenol content in both peel and flesh of the treatments were much higher than that of the untreatment. Reducing sugar was contained more in the peel than in the flesh and was higher in the untreatment than in the polyphenol preparation treatments. Treatment with polyphenol preparation showed differences in fruit appearance. As described above, it was found that the treatment of polyphenol preparation changed the leaves, fruit shapes and components of jujube trees. In particular, jujubes treated with polyphenol preparations are expected to contribute significantly to eco-friendly and highly functional jujube cultivation, as they appear to produce many fruits and increase the content of polyphenols and sugars.
Zanthoxylum schinifolium is an important short-term income species and a useful resource with various physiological activities. In this study, the distribution and characteristics of seed-rich individuals of Z. schinifolium trees were analyzed. Seed-rich individuals were selected from three regions in consideration of seed yield and growth factors. As a result of the leaf shape survey, the length and width of the leaves were shorter in Jeju and longer in Geochang and Hadong compared to the average. There were very large differences in seed production between individuals within the Z. schinifolium group. The amount of seeds was higher in Jeju and Hadong than in Geochang. As a result of analyzing the correlation between the seven morphological characteristics, the overall correlation coefficient was in the range of -0.910 ~ 0.933. Total seed mass (TS) and seed weight (SW) showed a strong positive (+) correlation. As a result of the principal component analysis, it was classified into two categories. The first principal component showed a high correlation in the order of total seed weight and total seed amount, and the second principal component showed a high correlation with seed length and tree height. As a result of comparing seed production for two years, it was found that there was no change in production. As a result of examining seed viability using the TTC method, all of Z. schinifolium seeds showed more than 90% vitality. It is judged that the above results will serve as basic data for the development of a new variety of seed-rich Z. schinifolium trees.