The operation of nuclear facilities involves the potential for on-site contamination of soil, primarily resulting from pipe leaks and other operational incidents. Globally, decommissioning process for commercial nuclear power plants have revealed huge-amounts of soil waste contaminated with Cs-137, Sr-90, Co-60, and H-3. For example, Connecticut Yankee in the United States produced approximately 52,800 ton of contaminated soil waste, constituting 10% of the total waste generated during its decommissioning. Environmental remediation costs associated with nuclear decommissioning in the US averaged $60 million per unit, representing a significant 10% of the whole decommissioning expenses. Consequently, this study undertook a preliminary investigation to identify important factors for establishing a site remediation strategy based on radionuclide- and site-specific media- characteristics, focusing the efficiency enhancement for the environmental remediation. The factors considered for this investigation were categorized into physical/environmental, socioeconomic, technical, and management aspects. Physical/environmental factors contained the site characteristics, contamination levels, and environmental sensitivity, while socio-economic factors included the social concerns and economic costs. Technical and management factors included subcategories such as technical considerations, policy aspects, and management factors. Especially, technical factors were further subdivided to consider the site reuse potential, secondary waste generation by site remediation, remediation efficiency, and remediation time. Additionally, our study focused the key factors that facilitate the systematic planning for the site remediation, considering the distribution coefficient (Kd) and hydrogeological characteristics associated with each radionuclide in specific site conditions. Therefore, key factors in this study focus the geochemical characteristics of site media including the particle size distribution, chemical composition, organic and inorganic constituents, and soil moisture content. Moreover, the adsorption properties of site media were examined concerning the distribution coefficient (Kd) of radionuclides and their migration characteristics. Furthermore, this study supported the development of a conceptual framework, containing the remediation strategies that incorporate the mobility of radionuclides, according to the site-specific media. This conceptual framework would necessitate the spatial analysis techniques involving the whole contamination surveys and radionuclide mobility modeling data. By integrating these key factors, the study provides the selection and simulation of optimal remediation methods, ultimately offering the estimated amounts of radioactive waste and its disposal costs. Therefore, these key factors offer foundational insights for designing the site remediation strategies according the sitespecific information such as the distribution coefficient (Kd) and hydrogeological characteristics.
General phases in the plan and implementation of an environmental remediation of radioactively contaminated sites are planning for remediation, site characterization, remediation criteria, remediation strategy, implementing remediation actions, and conducting post-remediation activities. Environmental remediation should commence with a planning stage. It is helpful to prepare reports which detail all the supporting activities related to these elements before significant levels of funds and efforts are committed. Site characterization is needed to provide sufficient data to make strategic decisions on the environmental remediation activities. The source characterization should include both waste characterization and facility or site characterization and should provide reliable estimates of the release rates of radioactive constituents as well as constituent distribution. During the preliminary site characterization, an engineering study should be conducted to develop remediation options which address the specific contaminant problem and are aimed to reduce radiological and chemical exposure. Options will include engineering approaches and associated technologies. A preliminary selection of options may be made based on several factors including future sites use, technical considerations, public acceptability, cost, and regulatory requirements. The implementation of remediation actions includes procurement of the selected technology, preparation of the site, development of a health and safety plan, development of operations procedures, staff selection and training, completion of site cleanup, verification, waste disposal, and release of the site for any future use. Once remediation activities have been completed and verified, the remediated site can be released for restricted or unrestricted use. Remediation of radioactively contaminated sites may require special adaptation to address sites covering very large surface areas or those which are deep and difficult to access. Quality assurance may be very important to the verification of environmental remediation activities. The selection of optimal remediation technologies to solve or mitigate the safety of an environmental contamination problem should be taken into account several factors. The several factors include performance (the ability of the technology to reduce risk to the health and safety of the public and to the environment), reliability and maintenance requirements for the technology, costs of implementing the technology, infrastructure available to support the technology, availability(the ease of accessing the technology and associated services), risk to workers and public safety, environmental impacts of the technology, ability of the technology to meet regulatory acceptance, and communication of stakeholder.
The critical hazards generated from operation of a melting facility for metal radioactive waste are mainly assumed to be such as vapor explosion, ladle breakthrough and failure in the hot-cell or furnace chamber using remote equipment. In case of vapor explosion, material containing moisture and/or enclosed spaces may, due to rapid expansion of gases when heated, cause an explosion and/or violent boiling. The rapid expansion of gases may lead to ejection of molten radioactive metal from the furnace into the furnace hall. If there is a large amount of liquid the explosion may damage or destroy technical barriers such as facility walls. The consequences for the facility ranges from relatively mild to very severe depending on the force of the explosion as well as the type of waste being melted. Nonradiological consequences may be physical damage or destruction of equipment and facility barriers, such as walls. Due to the radiological consequences a longer operational shutdown would likely be required. Cleanup efforts would include cutting of solidified metal in a problematic radiological environment requiring use of remote technology before damage and repair requirements can be assessed. Even though there is a risk for direct physical harm to operators for example in the control room and hot-cell, this analysis focuses mainly on the radiological impact. The extent to which remote equipment could be used in the decontamination effort will largely determine the health consequences to the workers. It is reasonable to assume that there will be a need for workers to participate manually in the effort. Due to the potentially large dose rates and the physical environment, it is possible that the maximum allowable dose burden to a worker will be reached. No major consequence for the environment is expected as most of the radioactivity is bound to the material. In case of ladle breakthrough, a ladle breakthrough involves loss of containment of the melt due to damage of the ladle. This may be caused e.g. by increased wear due to overheating in the melt, or from physical factors such as mechanical stress and impact from the waste. A ladle breakthrough may lead to spread of molten metal in the furnace hall. Molten metal coming into contact with the surrounding cooling equipment may cause a steam explosion. The consequences of a ladle breakthrough will depend on the event sequence. The most severe is when the molten metal comes into contact with the cooling system causing a vapor explosion. The basic consequences are assumed to be similar to those of the vapor explosion above. While the ejection of molten metal is likely more local in the ladle breakthrough scenario, the consequences are judged to be similar. In case of failure in the hot-cell or furnace chamber using remote equipment, the loss of electric supply or technical failure in the furnace causes loss of power supply. If not remedied quickly, this could lead to that the melt solidifies. A melt that is solidified due to cooling after loss of power cannot be removed nor re-melted. This may occur especially fast if there is not melted material in the furnace. An unscheduled replacement of the refractory in the furnace would be required. It could be unknown to what degree remote equipment can be used to cut a solidified melt. It is therefore assumed that personnel may need to be employed. This event could not have any impact on environment
Working with molten metal has always been and will always be a dangerous workplace. No matter how carefully equipment is designed, workers are trained and procedures are followed, the possibility of an accident can occur in melting workplace. Some primary causes of melt splash and furnace eruptions include wet or damp charge material, dropping heavy charge into a molten bath, wet or damp tools or additives and sealed scrap or centrifugally cast scrap rolls. Induction melting brings together three things (water, molted metal and electricity) that have the potential for concern if the furnace is not properly working. Induction furnace must have a water cooling system built into the coil itself. Water picks up the heat caused by the current as well as heat conducted from the metal through the refractory. The water carries the heat to a heat exchange for removal. Spill pits serve to contain any molten metal spilled as a result of accident, run out or dumping of the furnace in an emergency. If a leak is suspected at any time, cease operation and clear the melt deck area of all personnel and empty the furnace. Molten metal fins can penetrate worn or damaged refractory and come into contact with the coil. A furnace or a close capture hood which suddenly swings down from a tilted position will cause injury or death. Whenever workers are working on a furnace or close capture hood when it is in the tilted position, be sure that it is supported with a structural brace that is strong enough to keep it from dropping if hydraulic pressure is lost. In theory refractory wear should be uniform, however, in practice this never occurs. The most causes of lining failure are improper installation of refractory material, inadequate sintering of refractory material, failure to monitor and record normal lining wear, allowing the lining to become too thin, installation of the wrong refractory, improper preheating of a used cold lining, failure to properly maintain the furnace the sudden or cumulative effects of physical shocks or mechanical stress, and excessive slag or dross buildup. Pouring cradles provide bottom support for crucibles. A crack in the crucible occur below the bottom ring support, the bottom of the crucible can drop and molten metal will spill and splash, possibly causing serious injury or death. To reduce this danger, a pouring cradle that provides bottom support for the crucible must be used. Power supply units must have safety locks and interlocks on all doors and access panels. Workers who work with low voltage devices must be made aware of the risk posed by high levels of voltage and current. The most causes of accidents are introduction of wet or damp material, improper attention to charging, failure to stand behind safety lines, coming into contact with electrically charged components and lack of operator skills and training. Only trained and qualified personnel are to have access to high risk areas. Safety lockout systems are another effective measure to prevent electrical shock
Nuclear facilities present the important task related to the migration and retention of radioactive contaminants such as cesium (Cs), strontium (Sr), and cobalt (Co) for unexpected events in various environmental conditions. The distribution coefficient (Kd) is important factor for understanding these contaminants mobility, influenced by environmental variables. This study focusses the prediction of Kd values for radionuclides within solid phase groups through the application of machine-learning models trained on experimental data and open source data from Japan atomic energy agency. Three machine-learning models, such as the convolutional neural network, artificial neural network, and random forest, were trained for prediction model of the distribution coefficient (Kd). Fourteen input variables drawn from the database and experimental data, including parameters such as initial concentration, solid-phase characteristics, and solution conditions, served as the basis for model training. To enhance model performance, these variables underwent preprocessing steps involving normalization and log transformation. The performances of the models were evaluated using the coefficient of determination. These results showed that the environmental media, initial radionuclide concentration, solid phase properties, and solution conditions were significant variables for Kd prediction. These models accurately predict Kd values for different environmental conditions and can assess the environmental risk by analyzing the behavior of radionuclides in solid phase groups. The results of this study can improve safety analyses and longterm risk assessments related to waste disposal and prevent potential hazards and sources of contamination in the surrounding environment.
The mobility of radionuclides is largely determined by their radiological properties, geochemical conditions, and adsorption reactions, such as surface adsorption, chemical precipitation, and ion exchange. To evaluate the safety assessments of radionuclides in nuclear sites, it is essential to understand the behavior and mechanism of radionuclides onto soils. Since nuclear power plants are located in coastal areas, the chemical composition of groundwater can vary depending on the intrusion of seawater, altering the adsorption distribution coefficient (Kd) values of radionuclides. This study examines the impact of seawater on the Kd values of clay minerals for cesium (Cs) and strontium (Sr). The results of Cs+ adsorption experiments showed a broad range of Kd values from 36 to 1,820 mL/g at an initial concentration of 1 mg/L and a high sorption coefficient of 15-613 mL/g at an initial concentration of 10 mg/L. Montmorillonite, hydrobiotite, illite, and kaolinite were ranked in terms of their CEC values for Cs+ adsorption, with hydrobiotite having the highest adsorption at 1 mg/L. The results of Sr adsorption experiments showed a wide range of Kd values from 82 to 1,209 mL/g at an initial concentration of 1 mg/L and a lower adsorption coefficient of 6.68-344 mL/g at an initial concentration of 10 mg/L. Both Cs+ and Sr2+ demonstrated lower Kd values at higher initial concentrations. CEC of clays found to have a significant impact on Sr2+ Kd values. Ca2+ ions showed a significant impact on Sr2+ adsorption distribution coefficients, demonstrating the greater impact of seawater on Sr2+ compared to Cs+. These findings can inform future safety assessments of radionuclides in nuclear sites.
Working during decommissioning of nuclear facilities can subject workers to a number of industrial health and safety risks. Such facilities can contain hazardous processes and materials such as hot steam, harsh chemicals, electricity, pressurized fluids and mechanical hazards. Workers can be exposed to these and other hazards during normal duties (including slips, trips and falls, driving accidents and drowning). Industrial safety accidents, along with their direct impacts on the individuals involved, can negatively affect the image of nuclear facilities and their general acceptance by the public. Industrial safety is the condition of being protected from physical danger as a result of workplace conditions. Industrial safety program in a nuclear context are the policies and protections put in place to ensure nuclear facility workers are protected from hazards that could cause injury or illness. Preventive actions are those that detect, preclude or mitigate the degradation of a situation. They can be conducted regularly or periodically, one time in a planned manner, or in a predictive manner based on an observed condition. Corrective actions are those that restore a failed or degraded condition to its desired state based on observation of the failure or degradation. In industrial safety, the situations or conditions of interest are those observed via the performance monitoring, investigations, audits and management reviews. Preventive and corrective actions are those designed to place or return the system to its desired state. Preventive actions where possible are preferred as they eliminate the adverse condition prior to it occurring. When an accident or incident occurs, the primary focus is on obtaining appropriate treatment for injured people and securing the scene to prevent additional hazards or injuries. Once the injured personnel have been cared for and the scene has been secured, it is necessary to initiate a formal investigation to determine the extent of the damage, causal factors and corrective actions to be implemented. Certain tools may be needed to investigate such incidents and accidents. Initial identification of evidence immediately following the incident includes a list of people, equipment and materials involved and a recording of environmental factors such as weather, illumination, temperature, noise, ventilation and physical factors such as fatigue and age of the workers. The five Ws (what, who, when, where and why) are useful to remember in investigation of incidents and accidents.
Despite of careful planning of decommissioning projects, there are often surprises when facilities are opened for dismantling purposes, or when material is removed from hot cells, etc. Unexpected incidents and findings during the decommissioning of nuclear facilities have been referred to in the past as unknowns. However, many of the problems encountered during implementation of decommissioning are well known, it is simply that they were not expected to arise. In some other cases, the problem may not have been encountered in the decommissioning team’s experience, forcing the development of new techniques, tools and procedures to address the unexpected problem, with the attendant delays and cost overruns that this often involves. Unknowns in decommissioning cannot be eliminated, regardless of the efforts applied. This is especially the case in old facilities where documentation may have been lost or where modifications were carried out without updates to reports. As a result, when planning for decommissioning, it is prudent to assume that such problems will occur, and ensure that arrangements are in place to deal with them when they arise. This approach will not only improve the efficiency of the decommissioning project, but will also improve the safety of the operations. One of the most common root causes of unexpected events in decommissioning is the lack of detailed design information or missing records of modifications, maintenance issues and incidents during operation. It is therefore necessary to check the completeness of design information in existing plants and to ensure that configuration management techniques are applied at all stages of the lifetime of a plant. In the case of a new plant, archiving samples of materials can be a valuable source of information to support decommissioning planning. During the lifetime of plants, it is likely that modifications will be carried out involving the construction of new buildings. The opportunity should be taken in these circumstances to consider the layout, the physical size and other attributes of the plant to ensure that they do not make decommissioning of existing facilities more difficult and also to optimize the potential for reuse in support of the decommissioning of the whole site, later in the life of the facility. Characterization of all aspects of a plant is essential to reduce the number of unknowns and the likelihood of unexpected events. This characterization should be extensive, but there is a limit to the level of detail that should be sought as the cost versus benefit gain may reduce. Reducing unknowns by retrospectively obtaining physical data associated with a facility is a useful means of characterization, and there are many tools in existence that can be used to carry this out accurately and effectively. Regardless of the efforts that are employed in decommissioning planning, unexpected events should be anticipated and contingency plans prepared. Although the details of the event itself may not be anticipated, its impact may affect safety and environmental discharge, and may or may not involve radiological impacts. Regardless of more serious impacts, unexpected events are likely to result in modifications to the decommissioning plan, incur delays and cost money. Finally, regardless of the status of a facility, whether at the concept stage or at the decommissioning stage of its life cycle, it is never too early to begin thinking and planning for decommissioning.
The type of accidents associated with the operation of a melting facility for radioactive metal waste is assumed to only marginally differ from those associated with similar activities in the conventional metal casting industry or the current waste melting facility. However, the radiological consequences from a mishap or a technical failure differ widely. Three critical and at the same time possible accidents were identified: (1) activity release due to vapor explosion, (2) activity release due to ladle breakthrough, (3) consequences of failure in the hot-cell or furnace chamber not possible to remedy using remote equipment.