This study was conducted to evaluate the effect of lactic acid bacteria (LAB) inoculation to domestically-cultivated Italian ryegrass (IRG) on silage fermentation and in vitro ruminal fermentation. There were six treatments based on the LAB inoculants: 1) no addition of LAB (negative control: NC), additions of 2) commercially-available LAB (positive control: PC), 3) Lactobacillus plantarum (LPL), 4) L. paracasei (LPA), 5) L. acidophilus (LA), and 6) L. pentosus (LPT). All treatments were inoculated at a concentration of 106 CFU/g and ensiled for 3, 7, 21, and 42 days in triplicate and analyzed for nutritive values when ensiling was terminated. Day 42 silage from all treatments were also examined for in vitro ruminal fermentation. After 42 days, LAB-inoculated silages had higher (P<0.05) lactic acid concentration compared to the NC. In terms of nutritive values, the silages treated with LPA, LA, and LPT showed higher (P<0.05) crude protein and lower (P<0.05) neutral detergent fiber and acid detergent fiber content compared to the rest of the treatment. In vitro ruminal dry matter degradability was not affected by LAB addition. However, LAB-treated IRG had shown higher (P<0.05) ammonia-N compared with that of the NC. LPA had shown the highest (P<0.05) volatile fatty acid concentration among the LAB examined. In conclusion, the addition of a single strain of LAB appeared to produce a quality IRG silage compared with the NC and the PC. Among the strains examined, LPA seemed to be superior to the others.
This study was conducted to improve growth performance of Hanwoo heifer and to produce high quality of meat with dietary means during growing and early fattening period. Particularly, additional energy diet to relieve estrus stress was main purpose in this study. The results of in vitro rumen fermentation indicated that there was no negative effect by additional energy diet as treatments. In the feeding trial, twenty Hanwoo heifers(average 10 months age) were allocated and distributed into two treatments in randomized block design based on body weight. There were three growth stages such as growing, early fattening and late fattening periods in this feeding program, respectively. In growing stage, there were two treatments consisting of only total mixed ration(TMR) as a control and TMR with additional energy treatment. The experimental diets were fed twice a day, and water and mineral were freely accessed. In additional energy treatment, 500 g of concentrate diet was fed daily to relieve estrus stress due to obese with high energy intake. Not outstandingly differences were found across the treatments during entiretrial period. While, unexpectedly greater feed conversion ratio in treatment compared to the control was found during late fattening period. It seems that the blood cortisol decreased with addition energy supplementation compared with the control during trail period. Carcass characteristics including carcass weight, back fat thickness, marbling score, meat color, fat color, maturity and texture were not significantly different each other. Rib-eye area, however, was greater in the control compared to the treatment(p<0.05). In addition, it appears that yield index was tended to be greater in the control. In conclusion, it is suggested that additional energy supplementation to Hanwoo heifer could get a potential in improving meat quality and relieving estrus stress.
The present study investigated the effect of enzyme inclusion on silage quality using meta-analysis tool. A total of 16 research papers reporting the effect of enzyme application on silage quality were employed in the meta-analysis of this study. Mixed model for integrating quantitative results from multiple studies was used first to calculate the predicted error of each study. Individual error from the estimated model was the applied into standard deviation of each study to calculate the mean difference. Finally, summary effect was determined using standard mean difference (SMD) and inversed variance weighting. Mixed model analysis and SMD analysis showed the same effect patterns in all analysis items. Enzyme inclusion in silage significantly (p < 0.05) altered all silage quality characteristics investigated compared to control when enzyme was not included. Our results showed that enzyme treatment increased dry matter content, preserved crude protein effectively, and elevated water soluble carbohydrate content. However, the pH value, acetic acid, propionic acid, neutral detergent fiber, and acid detergent fiber contents in silage with enzyme inclusion were lower than those of the control.
The objective of this study was to determine the effect of bacterial inoculation (Lactobacillus plantarum or combo inoculant mixed with Lactobacillus plantarum and Lactobacillus buchneri) and addition of fibrolytic enzyme on chemical compositions and fermentation characteristics of whole crop barley (WCB) and triticale (TRT) silage, their ruminal in vitro fermentation, and digestibility. In TRT silage, enzyme addition significantly (p<0.01) decreased NDF content compared to no enzyme addition treatment. Organic acids such as lactate and acetate contents in WCB and TRT silages were significantly (p<0.01) higher compared to those in the control. Particularly, lactate content was the highest in L. plantarum treatment. Fibrolytic enzyme treatment on both silages had relatively higher lactic acid bacteria content, while mold content was lower in both treatments compared to that in the control. In vitro dry matter digestibility was generally improved in WCB silages. It was higher (p<0.01) in TRT with mixed treatment of L. plantarum, L. buchneri, and enzyme compared to others. In vitro ruminal acetate production was relatively higher in treatments with both enzyme and inoculant additions compared to that in the control. Therefore, the quality of silage and rumen fermentation could be improved by inoculants (L. plantarum and L. buchneri) regardless whether whole crop barley (WCB) or triticale (TRT) silage was used. Although it was found that fibrolytic enzyme addition to both silages had various quality and rumen fermentation values, further study is needed
The present study investigated the effects of Lysophospholipid (LPLs, LIPIDOL™) on the growth performance and nutrient digestibility of Hanwoo heifers. A feeding trial was performed for 120 days until slaughter using a herd of 24 Hanwoo heifers. Eight heifers were assigned to each of 3 experimental groups (control, 0.3% LIPIDOL™ and 0.5% LIPIDOL™). Growth performance, nutrient digestibility, and carcass characteristics were investigated. Significantly improved nutrient digestibility was found in the LIPIDOL™ treatment group compared to the control (p<0.05). No significant effect by LIPIDOL™ supplementation on growth performance was observed (p>0.05). However, interestingly, greater carcass weight was detected in the treatment of LIPIDOL™ where less daily gain was found. Although not a significant effect, greatly decreased back-fat thickness and increased loin area were detected in the treatment of LIPIDOL™. In meat characteristics, LIPIDOL™ increased intramuscular fat and tenderness. Therefore, the present study results suggest that the inclusion of LIPIDOL™ in the diet of Hanwoo heifers can improve carcass performance and meat quality by increasing the carcass index and the meat quality index. The results also suggest that a level of 0.3% might be more efficient than 0.5% with regard to economic effectiveness.
This study was conducted to investigate the effect of biological membrane transfer modifier, lysophospholipd (LPLs) on the parameters from in vitro rumen simulated fermentation. Commercially available LPLs product (LipidolTM) was supplemented into experimental diets which consisted of orchard grass and concentrate diet (60:40) in different levels (0.1%, 0.3% and 0.5%). Then in vitro rumen simulated fermentation was performed. Although, a declining trend of pH was found in treatments, all pH values were detected in a range relevant to normal rumen fermentation. Gas production, ammonia nitrogen and total VFA production were greatly influenced by the supplementation of LPLs. All parameters were increased along with increased levels of LPLs in diet. As a result, 0.1% of LipidolTM is recommended based on the determined in vitro rumen fermentative parameters in this study.
The present study was conducted to evaluate the effects of dietary formulated feed additive on growth performance and carcass traits of Hanwoo steers. A formulated feed additive reported to reduce heat load in the rumen in our previous research was used (Cho et al., 2014). Total 32 herds of Hanwoo steers were assigned into two groups of control and treatment. Total mixed ration was provided as basal diet for cattle and 100 g of additive was supplemented on diet for treatment. Feeding trial was performed during 120 days before slaughter. For growth performance, 3 periods (0~90 days; 90~120 days; 0~120 days) were allotted and average daily gain, feed requirement and final body weight were determined. Loin meat between 12th and 13th rib was used for meat quality analysis after slaughtering. Only 1st period showed significantly improved growth performance of treatment (P<0.05) and there were no significant difference in other periods. At 3rd periods (overall), a trend of increased average daily gain was found at treatment (P=0.075). Carcass performance and quality did not show significant differences between treatment and control (P>0.05). In meat quality, treatment showed significant increment in all measured meat colors (P<0.05) and significantly less sharing force compared to the control (P<0.05). Although no significant difference in growth performance and carcass yield were found, remarkably improved economic status was detected in treatment group. In conclusion, it could be suggested that application of a formulated feed additive specialized in reduction of heat load in the rumen was able to increase economical balance through enhancing heat stress condition of ruminant and growth.
This study was conducted to investigate the antibacterial, antioxidant, and in vitro greenhouse gas mitigation activities of fermented Scutellaria baicalensis Georgi extract. Seven starter cultures were used, comprising four of lactic acid bacteria and three of Saccharomyces cerevisiae. Ten grams of S. baicalensis Georgi powder was diluted in 90 mL autoclaved MRS broth. Each seed culture was inoculated with 3-10% (v/v) S. baicalensis Georgi MRS broth and incubated at 30℃ for 48 h. Among the starter cultures used, only Lactobacillus plantarum EJ43 could withstand the fermentation conditions. This fermentation broth was dried and extracted with ethanol to assess its antibacterial, antioxidant, and in vitro methane mitigation activities. The extract of S. baicalensis Georgi fermented by L. plantarum EJ43 (SBLp) showed higher antibacterial activity (bigger clear zone) compared to the unfermented S. baicalensis Georgi extract (SB0). SBLp also presented 1.2 folds higher antioxidant activity than SB0. During in vitro rumen fermentation, SBLp showed reduction in methane production compared to SB0 or the control. In conclusion, fermentation by L. plantarum EJ43 may enhance antibacterial and antioxidant activities of S. baicalensis Georgi and decrease enteric methane production.