Feral cats are widely considered to be leading the potential impacts on public health. This study aimed to provide estimates of vital data for feral cats relating Trap-Neuter-Return (TNR) to establish strategies effectively to manage feral cats in Pyeongtaek. Thus, this study focused on estimating feral cat population in Pyeongtaek and conducted a comparative analysis of the data for feral cats in Seoul (2013). The number of feral cats was estimated from 23,069 to 26,655 in Pyeongtaek, 2019. In relation to human population, when comparing the number of feral cats of Pyeongtaek and Seoul, it ranged from 4.57% to 5.28%, and from 1.97% to 2.55% respectively. This showed that Pyeongtaek was higher than Seoul. Fewer kittens were found in high-density areas, which the TNR project is believed to be generally effective in controlling the number of feral cats. In conclusion, in urban and rural complexes such as Pyeongtaek City, the number of feral cats compared to the population was higher than that of Seoul City, and the TNR program is believed to be somewhat effective in controlling the number of feral cats. When implementing TNR, it is necessary periodically to investigate the population and reflect them in policymaking.
본 연구는 국내 플라워샵에서의 절화보존제 사용현황 및 인식을 알아보고자 국내 성인남녀 120명의 플로리스트들을 상대로 설문조사를 진행하였다. 국내 플라워샵에서 일하는 플로리스트들 중 19.8%만이 절화보존제를 사용하는 것으로 나타난 반면, 전혀 사용하지 않은 플라워샵은 45.5%로, 국내 플라워샵에서의 절화보존제 이용이 매우 낮은 것으로 나타났다. 국내 플로리스트들의 절화보존제 주 사용 시기와 목적은 ‘화훼 상품 보관 시(39.6%)’에 ‘균 번식 억제를 위해(36.7%)’ 가장 많이 사용하는 것으로 나타났으며 절화보존제를 사용하지 않는 이유에 대해서는 필요성을 느끼지 못한다는 응답(51.4%)이 가장 높게 나타나, 절화보존제에 대한 인식이 부족한 것으로 나타났다. 그러나, 절화보존제 사용 경험이 있는 플로리스트들에게서는 절화보존제의 이용 만족도가 높게 나타났으며, 50.5%의 절화보존제 이용 경험자는 재구매 의사가 매우 높은 것으로 나타났다. 일반적으로 국내 플로리스트들의 경우 절화보존제에 대한 관심이 적지는 않으나(Mean=3.22), 절화보존제의 적은 이용 빈도와 낮은 인지도는 국내 절화보존제 시장이 작고 홍보가 부족하여 나타난 것으로 판단된다. 절화보존제 사용 후 플로리스트들의 높은 만족도와 재구매의사를 보았을 때, 절화보존제에 대한 홍보와 교육을 통하여 국내 플라워샵에서의 절화수명제의 접근성을 높이고 절화 품질 관리에 대한 인식을 고양시킬 수 있을 것이며, 이를 통해 소비자들에게도 고품질의 관상기간이 긴 절화 상품 제공을 통하여 국내 절화산업의 발전을 가져올 수 있을 것이다.
In the current study, a total of 102 common Todarodes pacificus squid caught in the East Sea were investigated for parasitological research. The results revealed that 33 (32.35%) out of 102 squid were infected by Nybelinia surmenicola, the mean intensity was 5.58 parasites per squid, and the maximum abundance was 11. Morphological analysis using a field emission scanning electron microscope showed the characteristic features of N. surmenicola. Molecular identification based on the 28S rRNA gene confirmed the isolated parasite as N. surmenicola, while phylogenetic analysis revealed that N. surmenicola isolated in this study was clustered with N. surmenicola isolated from Japan. This is the first report of phylogenetic characterization of N. surmenicola isolated from Korea.
Toll and IMD pathways play an important role in producing antimicrobial peptides (AMPs) through NF-κB in insects. The functions of IκB kinase (IKK) complex regulating the NF-κB signaling cascade have not yet been investigated in Tenebrio model. Here, we identified TmIKK-β (or TmIrd5) which contains 2,112 bp encoding 703 amino acid residues. Domain analysis shows that TmIKK-β contains one Serine/Threonine protein kinases catalytic domain. Developmental expression patterns indicate that TmIKK- β gene was highly expressed in early pupal (P1) and adult (A5) stages. Tissue specific profiles show that TmIKK-β was highly expressed in the integuments in last instar larvae, and fat body and hemocytes in 5 day-old adults. TmIKK-β1 transcripts were strongly induced at 3 and 12 h-post injection of E. coli, and 3 h-post injection of S. aureus or C. albicans in hemocytes. In gut, TmIKK-β transcripts were slightly induced by E. coli (at 6, 9 and 24 h) and C. albicans (at 24 h), while it was not induced by S. aureus challenge. Moreover, it was highly induced at 6 h-post injection of E. coli and then it was gradually decreased in the fat body. To understand the immunological role of TmIKK-β, gene specific RNAi and mortality assay was performed. Depletion of TmIKK-β mRNA leads to increase microbial susceptibility of larvae against E. coli, S. aureus and C. albicans. In addition, induction patterns of fourteen AMP genes in response to microbial challenge was tissue specifically investigated in TmIKK-β–silenced T. molitor larvae. The results suggest that expression of ten AMP genes out of fourteen genes were drastically decreased by TmIKK-β RNAi in fat body, suggesting that TmIKK-β plays an important role in antimicrobial innate immune responses.
Autophagy is an important self-eating process to eliminate damaged or unused organelles. We identified nine autophagy-related genes (Atg) including AaAtg-1, -3, -4b, -4d, -5, -6, -8, -12 and -13 from the Asian tiger mosquito, Aedes albopictus. Developmental expression patterns indicate that mRNA levels of AaAtg-1, -3, -4b, -4d, -5, -6, -12 and -13 were highly expressed in egg, whereas expression of AaAtg8 was high in 1stand3rdinstarlarvalstages. TissuespecificexpressionofthesegenesindicatesthatAaAtg1 was highly expressed in thorax and midgut in blood-fed adult female mosquitoes (BF), and head and thorax in sugar fed adult female mosquitoes (SF). Transcript level of AaAtg3 was high in thorax in BF, but head, thorax and Malpighian tubules in SF. AaAtg4b, -4d mRNA levels were significantly high in Malpighian tubules in BF, and head in SF, respectively. AaAtg-5 and -6 transcripts were highly expressed in head in BF, and expression of AaAtg-8 was high in Malpighian tubules in BF. Levels of AaAtg-12 and -13 mRNAs were significantly high in head and midgut in BF. Induction patterns of AaAtg genes against pathogens showed that AaAtg-1, -3, -4b, -8, -12 and -13 were strongly induced at 6 h-post injection of S. aureus, and mRNA levels of AaAtg-1, -3 and -13 were significantly induced by E. coli challenge after 3 h-post injection in SF abdominal carcass. In SF midgut, AaAtg-1, -3, -4b, -4d, -5, -6, -12 and -13 transcripts were drastically induced at 9 h-injection of E. coli and S. aureus, while expression of AaAtg-8 was highly induced by S. aureus and C. albicans at 9 h-post injection. Each AaAtg gene was slightly induced by E. coli, S. aureus or C. albicans at different time points in abdominal carcass in BF. Interestingly, AaAtg-8 was not induced by microbial challenge. While eight other Atg genes except AaAtg-8 were highly influenced by S. aureus at 6 and 9 h-post injection, E. coli at 3 h-post-treatment, and 3, 6, and 9 h-post inoculation. In the future, we will characterize the functional roles of autophagy during mosquito-microbes interaction.
It has been well known that IKK-β, -ε and –γ play a pivotal role in IMD pathway. In this study, TmIKK-ε was identified and their functions in countering pathogenic infections were investigated. We identified TmIKK-ε gene which including 2,196 bp nucleotides (encoding 731 amino acid residues). Domain analysis of TmIKK-ε indicates that there is one Serine/Threonine protein kinases catalytic domain. TmIKK-ε gene was highly expressed in 2 day-old pupal stage and the expression was gradually decreased until 1 day-old adults. Then the expression was slightly increased until 4 day-old adult stage. Tissue specific expression of TmIKK-ε mRNA was high in the gut, integuments and hemocytes in last instar larvae, and fat body, Malpighian tubules and testis in 5-daysold adult. In hemocytes, TmIKK-ε was drastically induced by E. coli injection after 3 h and by S. aureus at 3 and 12 h-post injection. In gut, expression level of TmIKK-ε was high at 6 h-post injection of microbial injection. Expression of TmIKK-ε in fat body was drastically induced by E. coli at 3 and 24 h-post injection while it was not significantly induced by S. aureus and C. albicans. To understand the immunological role of TmIKK-ε, gene specific RNAi and mortality assay were performed. TmIKK-ε RNAi caused increased larval mortality against E. coli, not S. aureus and C. albicans. Finally, to investigate the induction patterns of Tenebrio fourteen AMP genes in response TmIKK-ε RNAi, three microorganisms were treated into TmIKK-ε-silenced T. molitor larvae. Nine out of fourteen AMP genes were not induced by microbial challenge in TmIKK-β dsRNA-injected group. Taken together, our results indicate that TmIKK-ε may regulates nine antimicrobial peptide genes in response to microbial challenge in T. molitor fat body.
Host defense against pathogen invasion highly relies on immune defense machinery that is controlled by the nuclear factor-κB (NF-κB) of transcription factors. The Toll pathway are well known as an insect innate immune mechanism to protect host itself from invaded pathogens. Basically, in the edible insect, Tenebrio molitor, the Toll pathway is primarily activated by polymeric Lys-type peptidoglycans (PGNs), and components of fungal cell walls, β-1,3-glucan. Based on the current studies, the tremendous study has been focused on recognition and subsequent activation of spätzle in haemolymph, hence, there is a grave gap for intracellular event. Herein, in order to understand intracellular event of Toll signaling pathway, the Dorsal gene were identified. Moreover, domain analyses of TmDorsal2 gene indicate that there are two major domains such as Rel homology domain (RHD), ig-like, plexins, and transcription factors (IPT) domains. Based on the achieved results, TmDorsal2 mRNA was highly expressed in 1-day old pupa. Furthermore, TmDorsal2 was highly expressed in Malpighian tubules and fat body in last instar larvae (LL), and likewise mainly expressed in Malpighian tubules during adult 5-day old period, also the lowest expression of TmDorsal2 was observed in gonads. Moreover, TmDorsal2 mRNA levels after infection with E. coli appreciably went up at 6 and 9h time points. To investigate the effects of TmDorsal2 RNAi on larval susceptibility against various pathogens namely E. coli, S. aureus or C.albicans, dsRNA of TmDorsal2 has been synthesized the larvae dissected after 24h. As a result, TmAttacin1a, 1b and 2, TmDefencine1 and 2, TmTenecin1, 2, 3 and 4, TmCecropin2, TmColeoptericin1 and 2, Thaumatin-like protein 1 and 2 markedly reduced in the gut after injecting all mentioned microbes. In contrast, TmTenecin 2, Thaumatin-like protein 1 and 2 strikingly increased after microbe injection in the fat body. Interestingly, the most AMPs gene expression in whole body experimental case were upregulated. On the horizon, we will investigate effects of TmDorsal1 RNAi on larval susceptibility against various pathogens. Taken together, our studies may aid to understand insect innate immunity.
IKK-γ is an essential protein to form IKK complex which regulate NF-κB. We identified TmIKK-γ (or TmKenny) gene which has 1,521 bp of nucleotides encoding 506 amino acid residues. Domain analysis of TmIKK-γ shows that there are one NF-κB essential modulator (NEMO) domain and a leucine zipper domain. Expression of TmIKK-γ gene was gradually increased from egg to 2-day-old pupal stage, dramatically decreased until 7 day-old pupal stage, and then it was gradually increased. TmIKK-γ transcripts were highly expressed in fat body and hemocytes in late instar larvae and integuments, fat body and Malpighian tubules in 5 day-old adult. TmIKK-γ was drastically induced by E. coli after 3 h challenges and by S. aureus at 3 and 12 h-post injection in hemocytes. TmIKK-γ was not induced by C. albicans although it was significantly induced by E. coli (at 3, 6 and 24 h) and S. aureus (at 9 h) in gut. In fat body, expression of TmIKK-γ was drastically induced by E. coli at 3 and 24 h-post injection while it was not significantly induced by S. aureus and C. albicans. To understand the immunological role of TmIKK-γ, gene specific RNAi and mortality assay was performed. larval mortality against microbial challenge was dramatically increased by TmIKK-γ RNAi. Furthermore, we investigate the tissue specific induction patterns of fourteen AMP genes in response TmIKK-γ dsRNA-treatment. In fat body, ten AMP genes out of fourteen was not significantly induced by microbial challenge in TmIKK-γ dsRNA-treated group. Based on these results, TmIKK-γ might play an important role in antimicrobial innate immune responses in Tenebrio molitor.
Field sequential 액정 디스플레이(FSLCD)는 컬러필터를 사용하지 않아 높은 투과율 특성을 보이고 광
원으로 LED를 사용함으로써 색재현성이 매우 우수하다. 하지만 FSLCD(60Hz 구동)를 실현하기 위해서는 액정의 응답속도가 5ms이하로 고속응답 특성을 보여야 한다. 따라서 본 논문에서는 고속응답 ECB(electrically controlled birefringence) 셀의 최적 구조를 연구하여 5ms 이하의 응답시간을 얻었다. 그리고 ECB 모드에서 높은 구동전압과 시야각을 개선하기 위해 필름 보상을 연구하였다. 판상형 액정필름(discotic film)과 TAC(triacetyl cellulose) 필름의 위상차 값을 최적화함으로써 구동전압을 5V로 낮추고 상하좌우에서 160° 이상(CR>10:1)의 시야각을 실현하였다.
Backgoound : This study was conducted to serve as a basis for the selection of superior lines by analyzing the content of antioxidant component and antioxidant activity in Schisandra chinensis Collections Methods and Results : In order to examine antioxidant component and antioxidant activity, 154 species of Schisandra chinensis from whole country were used. Antioxidant component was investigated by total flavonoid content and total phenolic content and antioxidant activity was evaluated by DPPH radical scavenging activity and ABTS radical scavenging activity. As a result, the total amounts of flavonoids was highest in SC-20 with 5.03 ㎎/g. However the content of polyphenols showed highest in SC-22 with 2.76 ㎎/g. In addition antioxidant activity results were also relatively high in SC-22. The IC50 value was 548 ㎍/㎖ in DPPH radical scavenging and 640 ㎍/㎖. in ABTS+ radical scavenging. Conclusion : As demand for high income crop has increased, new cultivar breeding is required to produce high quality Schisandra chinensis From this study, analyses of antioxidant component and antioxidant activity in collection can be used for new Schisandra chinensis breeding. Especially SC-22 can be superior lines with high antioxidant component and antioxidant activity.
Background : Tooth vitality is reflected by the health of dental pulp. Schisandrin C is a natural compound extracted from the fruit of Schisandra chinensis which has anti-inflammatory and anti-oxidant properties. The role of Schisandrin C on human dental pulp cells (HDPCs) has not been studied yet. This study examined the properties of Schisandrin C as an anti-inflammatory and anti-oxidant compound, and whether its characteristics promote mitochondrial biogenesis in HDPCs. Methods and Results : HDPCs were extracted from fresh third molars and cultured. Reactive oxidative stress (ROS) and nitric oxide (NO) formation were analyzed by a Muse cell analyzer. Western blotting and gelatin zymography were used to identify the presence of anti-oxidants, as well as inflammatory and mitochondrial biogenesis. Confocal microscopy was used for the detection of mitochondrial activity. Schisandrin C inhibited lipopolysaccharide (LPS)-stimulated inflammatory molecules; intracellular adhesion molecule-1 (ICAM-1), vascular cell adhesion molecule-1 (VCAM-1), matrix metalloproteinase-2 and -9 (MMP-2/9), NO production, ROS formation and the mitogen-activated protein (MAPK) pathway through minimizing the nuclear factor kappa B (NF-kB) translocation. Schisandrin C increased the expression of superoxide dismutase (SOD) enzymes as well as heme oxygenase-1 (HO-1) and peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1a) through the phosphorylated-protein kinase B (p-AKT) and nuclear factor erythroid 2-related factor-2 (Nrf-2) pathways. The anti-inflammatory and anti-oxidant properties of Schisandrin C promoted mitochondrial biogenesis. Conclusions : These results suggest that Schisandrin C may be used as an anti-inflammatory compound to reduce oral inflammation such as pulpitis.
남극 지의류인 Ramalina terebrata에서 분리 정제된 라말린(γ-glutamyl-N'-(2-hydroxyphenyl)hydrazide)은 이전 연구에서 강력한 항산화능을 확인하였다. 본 연구에서는 라말린의 추가적인 효능을 확인하기 위하여, 비암세포 세포주인 멜란에이 세포를 이용하여 라말린의 멜라닌 합성에 대한 효과를 확인하였다. 라말린은 세포 독성이 없는 농도에서, 멜란에이 세포에서 멜라닌 합성을 농도 의존적으로 감소시켰으며, 이러한 효과는 널리 사용되고 있는 미백제인 알부틴보다 우수하였다. 라말린은 무세포 타이로시네이즈의 활성을 직접 저해했을 뿐만 아니라, 세포 내의 타이로시네이즈의 활성도 저해하는 효과를 보였다. 라말린의 이러한 멜라닌 합성 저해의 기전 연구를 위하여, 멜라닌 합성에 중요한 단백질인 타이로시네이즈, TRP-1, TRP-2의 mRNA와 단백질 발현을 조사한 결과, mRNA양에는 영향을 주지 않고,단백질의 발현은 감소되는 것으로 나타났다. 또한, 0.2 % 라말린을 포함한 제형을 사람피부에 도포하였을 때, 3주 후에 피부 밝기가 개선됨을 확인하였다. 이상의 결과를 통해서, 라말린은 타이로시네이즈의 직접적인 저해뿐만 아니라 멜라닌 합성과 관련된 단백질의 발현을 저해함으로써 미백효과를 나타낸다고 할 수 있으며, 이러한 효과를 인체시험을 통해 확인하였다. 따라서, 라말린은 멜라닌 합성을 저해하는 미백 소재로 활용될 수 있을 것으로 판단된다.