River discharge is a crucial indicator of climate change and requires accurate and continuous estimation for effective water resource management and environmental monitoring. This study used satellite gravimetry data to estimate river discharge in major basins with high discharge volumes, specifically the Congo and Orinoco basins. By enhancing the spatial resolution of gravity data through advanced post-processing techniques, including forward modeling and river routing schemes, we effectively detected changes in the water mass stored within river channels. Additionally, signals from surrounding regions were statistically removed using the Empirical Orthogonal Function (EOF) analysis to isolate river-specific discharge signals. These refined signals were then converted into river discharge data through seasonal calibration using the modeled discharge data. Our results demonstrate that this method yields accurate and reliable discharge estimates comparable to in-situ measurements from gauge stations, even without ground-based surveys such as an Acoustic Doppler Current Profiler (ADCP) field campaigns. This research highlights the significant potential of satellite-based gravity data as an alternative to traditional ground surveys, providing practical information on the hydrological status of regions associated with large-scale river systems.
Schlumbergera truncata absorbs CO2 through its mature phylloclades during the night, and can use a substantial amount of CO2 without requiring ventilation. This study investigated the growth and photosynthetic responses of S. truncata ‘Red Candle’ at two CO2 levels—ambient (≈ 400 μmol・mol-1) and elevated (≈ 1000 μmol・mol-1). At 0–8 weeks after treatment (WAT), width and length of mature phylloclade and length of immature phylloclade did not differ significantly among the CO2 treatments. At 4–8 WAT, number of branches and phylloclades were significantly greater in plants grown under ambient CO2 than those under elevated CO2. Net CO2 uptake was highest in mature phylloclades of plants grown under ambient and elevated CO2 regimes at night, at 2.51 and 1.30 μmol·CO2·m-2·s-1, respectively. However, no statistically significant variation was observed at 6 WAT, and stomatal conductance was significantly affected only by CO2 uptake time at 6 and 8 WAT. Water-use efficiency of mature and immature phylloclades at night increased with increase in CO2 levels (r = 0.7462 and 0.9312, respectively). At 123 days after treatment, plants grown under elevated CO2 had 82.7 floral buds, compared to 72.1 buds in those under ambient CO2. However, this difference was not statistically significant. Moreover, S. truncata grown under elevated CO2 exhibited decreased growth and photosynthesis, whereas the number of floral buds did not exhibit any significant differences among the treatments.
In this work, we investigated the photo-degradation performance of MnO2-SiC fiber-TiO2 (MnO2-SiC-TiO2) ternary nanocomposite according to visible light excitation utilizing methylene blue (MB) and methyl orange (MO) as standard dyes. The photocatalytic physicochemical characteristics of this ternary nanocomposite were described by X-ray diffraction (XRD), scanning electron microscopy (SEM), tunneling electron microscopy (TEM), ultraviolet-visible (UV-vis), diffuse reflectance spectroscopy (DRS), electrochemical impedance spectroscopy (EIS), photocurrent and cyclic voltammogram (CV) test. Photolysis studies of the synthesized MnO2-SiC-TiO2 composite were conducted using standard dyes of MB and MO under UV light irradiation. The experiments revealed that the MnO2-SiC-TiO2 exhibits the greatest photocatalytic dye degradation performance of around 20 % with MB, and of around 10 % with MO, respectively, within 120 min. Furthermore, MnO2-SiC-TiO2 showed good stability against photocatalytic degradation. The photocatalytic efficiency of the nanocomposite was indicated by the adequate photocatalytic reaction process. These research results show the practical application potential of SiC fibers and the performance of a photocatalyst composite that combines these fibers with metal oxides.
본 연구는 무늬 식물의 발현 양상을 확인하기 위해 Peperomia 속의 무늬가 없는 P. rotundifolia와 무늬 발생 양상이 서로 다른 P. argyreia, P. obtusifolia ‘Variegata’, P. marmorata ‘Pink Lady’4종을 대상으로 잎의 형태적 특성과 색소 구성 특성을 비교 분석하였다. 연구 결과, P. argyreia은 배경색과 무늬색의 색차(△E)가 크게 나타났지만, 단면 세포에서는 엽 록소가 고르게 분포하고, 색소 구성에서 무늬 유무에 따른 차 이가 없었다. 반면, c ‘Variegata’는 색소 구성에서 배경색과 무늬색 사이에 유의적인 차이를 보였다. 단면 세포에서도 엽 록소 분포의 차이가 뚜렷이 관찰되었다. 붉은 색의 무늬를 가 진 P. marmorata ‘Pink Lady’는 안토시아닌을 포함하고 있 어, 다른 품종들과는 다르게 색소체 생성에 따른 무늬 발현 양 상을 보였다. 결론적으로, P. argyreia는 표피의 공기층에 의 해 무늬가 발현되는 구조적 패턴을 가지며, P. obtusifolia ‘Variegata’와 P. marmorata ‘Pink Lady’는 엽록소와 카르 티노이드, 안토시아닌 등 색소적 특징에 의해 무늬를 발현시 키는 것으로 확인되었다. 이처럼 품종 특이적으로 다른 무늬 발생 양상을 가진 식물은 관상 가치를 유지하기 위한 광환경 이 다르게 요구될 것으로 판단된다.
Traditional medicine and herbal remedies are gaining popularity worldwide, comprising a significant portion of healthcare research, advancements, and market demand. Growing scientific evidence supports their substantial efficacy as pharmaceutical ingredients and dietary supplements in preventive healthcare. When developing pharmaceuticals, it is crucial to ensure that ingredients are free from side effects and toxicity in order to prioritize safety. Geckos, known as shou gong, are a diverse group of lizards that are widely utilized for treating various diseases in Korean Medicine. This study was conducted to assess the potential acute toxicity of a water extract Gekko gecko by a single oral dose in Sprague-Dawley rats. Twenty rats of each sex were randomly assigned to four groups (5 rats each). Test articles were administrated once by oral gavage to rats at dose levels of 0, 500, 1,000, or 2,000 mg/kg body weight. Mortality, changes of body weight, and clinical signs of gross observation were monitored for 14 days after dosing. At the end of a 14-day observation period, all animals were sacrificed and complete macroscopic and hematological examinations were performed. There was no dead animal or test article-related effect on clinical signs, body weight, or gross finding. Other specific changes were not found between control and treated groups in hematology. Results showed no adverse effect at a dose of 500, 1,000, or 2,000 mg/kg in rats. The minimal lethal dose was considered to be over 2,000 mg/kg body weight in rats.
The issue of marine accidents can be based on the traffic/distribution of vessels in the waterways. These accidents are often associated with human and financial losses and require special attention. Usually, these accidents include collision of two fishing vessels with each other, collision of a fishing vessel with other types of vessels in the course and collision of a fishing vessel with an obstacle in the course (Yancai, et al, 2020). In this article, we first want to deal with analysing the recorded statistical samples in 7 fishing areas in coastal waters of South Korea in 2023, while fuzzy clustering them. Then, according to analysing the sample data and finding the probabilistic structure and the membership of data sets the determined clusters, through Monte Carlo simulation, we will generate similar data in each of the 7 studied regions and model them in unsupervised mode. The generated data by Monte Carlo simulation based on the statistical distribution will able us to study the reality of distribution and possible accident in our target areas and find the model for future demands. We show that how the simulated data reduce the cost of data analysis and deliver us the facts of clusters for fishing vessels collisions. Finally, we reach to the most notified area for preventing the fishing vessels accidents and to make more preparations for reducing the human and costly damages in future activities.