Cordyceps militaris is widely used in China, Korea, and other Asian countries as both a traditional medicinal ingredient and an edible fungus. This study aimed to optimize the growth conditions and fruiting body production of C. militaris by investigating various culture media and physical parameters such as pH, aeration, illumination, temperature, spawn materials, and oat–sawdust-based substrate formulations. After a 7-day incubation period, oats with a pH of 6.0, under sealed and illuminated conditions at 32°C, demonstrated the most effective mycelial growth. Substrates consisting of 70% oat and 30% sawdust had the shortest incubation time of 30.5 days for fruiting body formation. The basidiospores showed a typical germination pattern where the sporidium produced a single germ tube that elongated, and branched to form monokaryotic primary mycelia. In conclusion, using oats as a substrate in the cultivation of C. militaris could reduce production costs and help protect the environment.
We studied the effects of initial pH, different nitrogen sources, and cultivation methods (shake flask and static culture) on biomass production, exopolysaccharides (EPS), and adenosine by Paecilomyces tenuipes. Relatively low pH levels were optimal for mycelial growth and EPS production. Yeast extract was the most effective organic nitrogen source for EPS production, whereas soybean extract was the best for adenosine production. A high C/N ratio was beneficial for adenosine production; however, excessively high C/N ratios reduced adenosine production. Static fermentation significantly increased adenosine production. A Box-Behnken design was used to optimize adenosine production; the optimal conditions for adenosine production by P. tenuipes were pH 7.0, soybean concentration of 3%, and a static culture period of 20 days, with the maximum adenosine production of 141.10 mg/L (predicted value: 128.05 mg/L).
Ethanol production from various agricultural and forest residues has been widely researched, but there is limited information available on the use of mixed hardwood for ethanol production. The main objective of this study is to assess the impact of time on the steam explosion pretreatment of waste wood (mixed hardwood) and to determine the convenience of a delignification step with respect to the susceptibility to enzymatic hydrolysis of the cellulose residue and the recoveries of both cellulose and hemicellulosic sugars. Delignification did enhance enzymatic hydrolysis yields of steam exploded waste wood. For steam explosion pretreatment times of 3 and 5 min, the recovery yield of hemicellulosic-derived sugars decreased. The effective hemicellulose solubilization does not always result in high recoveries of hemicellulose-derived sugars in the liquid fractions due to sugar degradation. In the steam explosion pretreatment times of 3 and 5 min, where hemicellulose solubilization exceeded 95%, but sugar recoveries in the liquid fraction remained below 30%. Cellulose to glucose yield losses were less significant than hemicellulosic-sugar losses, with a maximum loss of 24% at 5 min. Up to 80% of the lignin in the original wood was solubilized, leaving a cellulose-rich residue that led to a concentrated cellulose to glucose yield solution (about 50 g/L after 72 h enzymatic hydrolysis in the best case). The maximum overall process yield, taking into account both sugars present in the liquid from steam explosion pretreatment and cellulose to glucose yield from the steam exploded, delignified and hydrolyzed solid was obtained at the lowest steam explosion pretreatment time assayed.
This paper explores the potential application of carbon nanotubes (CNTs) in the construction industry, as CNTs can effectively serve as nano-fillers, bridging the voids and holes in cement structures. However, the limited dispersibility of CNTs in water necessitates the use of dispersing agents for achieving uniform dispersion. In this study, two kinds of cement superplasticizers, polycarboxylate ether (PCE) and sulfonated naphthalene formaldehyde (SNF) were employed as dispersing agents to improve the interfacial affinity between CNTs and cement, and to enhance the strength of the cement nanocomposites. Contact angle experiments revealed that the utilization of PCE and SNF effectively addressed the interface issues between CNTs and cement. As a result, the cement nanocomposite with a CNT to PCE ratio of 1:2 exhibited an approximately 6.6% increase in compressive strength (73.05 MPa), while the CNT:SNF 1:2 cement composite showed a 4.7% increase (71.72 MPa) compared to plain cement (68.52 MPa). In addition, the rate of crack generation in cement nanocomposites with CNTs and dispersing agents was found to be slower than that of plain cement. The resulting cement nanocomposites, characterized by enhanced strength and durability, can be utilized as safer materials in the construction industry.
Background: Platelet-derived growth factor receptor alpha (PDGFRα) is essential for various biological processes, including fetal Leydig cell differentiation. The PDGFRαEGFP mouse model, which expresses an eGFP fusion gene under the native Pdgfrα promoter, serves as a valuable resource for exploring PDGFRα’s expression and function in vivo. This study investigates PDGFRα expression in adult testicular cells using PDGFRαEGFP mouse model. Methods: Genotyping PCR and gel electrophoresis were used to confirm the zygosity of PDGFRαEGFP mice. Histological examination and fluorescence imaging were used to identify PDGFRα expression within testicular tissue. Immunohistochemical analysis assessed the co-expression of PDGFRα with c-Kit, ANO-1, and TASK-1 in testicular cells. Results: Genotyping confirmed the heterozygous status of the mice, which is crucial for studies due to the embryonic lethal phenotype observed in homozygotes. Histological and fluorescence imaging revealed that PDGFRα+ cells were primarily located in the interstitial spaces of the testis, specifically within Leydig cells and peritubular myoid cells (PMCs). Immunohistochemical results showed PDGFRα co-localization with c-Kit and ANO-1 in Leydig cells and a complete co-localization with TASK-1 in both Leydig cells and PMCs. Conclusions: The findings demonstrate specific expression of PDGFRα in Leydig cells and PMCs in adult testicular tissue. The co-expression of PDGFRα with c-Kit, ANO-1, and TASK-1 suggests complex regulatory mechanisms, possibly influencing testicular function and broader physiological processes.
The objective of this study was to determine the ultrasonication-assisted extraction conditions that maximize the DPPH radical scavenging activity of extracts obtained from the stems of Lespedeza bicolor Turcz through the application of the Response Surface Methodology (RSM). Before delving into the analysis of extraction conditions using the RSM model, we conducted efficiency validation of ultrasonication-assisted extraction and executed single-factor experiments for ethanol concentration, extraction time, and extraction temperature. The data obtained from these single-factor experiments were employed to construct the Box-Behnken Design (BBD). In these results, in the single-factor experiments, it was evident that the parameters for ethanol concentration, extraction time, and extraction temperature exhibited quadratic trends. The single-factor experiments allowed us to discern the trends for each parameter leading to the maximum antioxidant capacity, and this data was subsequently applied to the BBD. Following the completion of initial experiments, a Response Surface Methodology (RSM) model was constructed based on Box-Behnken Design (BBD). According to the predictive model developed in this study, it was anticipated that performing ultrasonic-assisted extraction for 85.0412 minutes at an ethanol concentration of 32.573% and an extraction temperature of 51.5608°C will result in a DPPH radical scavenging activity of 79.7146%. The predictive results were statistically verified through a comparative analysis with actual measurements and ANOVA analysis, confirming the statistical significance of the model. The finding of this study underscore the significance of optimizing extraction conditions in the precise quantification of the antioxidant potential for economic advantages in both experimental and industrial contexts.
Fas-associated death domain protein (FADD) functions as an apoptotic adapter in mammals, recruiting caspases for death-inducing signaling complexes, while in lower animals, it interacts with IMD and DREDD to initiate antimicrobial responses. In this study, we examined the T. molitor FADD sequence (TmFADD) using molecular informatics methods to understand its involvement in the host's immune response against microorganisms. Knocking down TmFADD transcripts resulted in increased susceptibility of T. molitor larvae to E. coli, underscoring the significance of FADD in insect defense mechanisms and providing valuable insights into insect immunity.
Tenebrio molitor(T. molitor) is gaining attention as a sustainable food source with high nutrient content. Understanding their immune system, paricularly the role of Tak1 in the Imd pathway, is essential for mass breeding. This study investigates TmTak1 function in T. molitor. we investigated the immune function of TmTak1, followed by systemic infection using E. coli, S. aureus, and C. albicans. As a result, Silencing TmTak1 significantly affects expression levels of AMPs in the whole body, Fat bodies, and Integuments. These results showed lower expression levels of AMP compared to the control group during E.coli injection.
수염풍뎅이(Polyphylla laticollis manchurica)는 과거에는 흔히 발견되었으나, 1970년대 이후 한반도 내 개체수 가 급격히 감소하여 2005년 환경부에 의해 멸종위기 야생생물 Ⅰ급으로 지정되었다. 또한 해당종의 분자생물학적 연구는 멸종위기종이라는 특성으로 인해 제한적으로 진행되었다. 그로 인해 NCBI 등 공공 데이터베이스에서 제공되는 서열정보들 또한 부족한 실정이다. 이 연구는 이러한 한계를 극복하고 수염풍뎅이의 유전적 특성을 규명하기 위해 생물정보학적 기술을 활용하여 전사체 분석을 진행하였다. Illumina HiSeq 2500 플랫폼을 사용하여 53,433,048개의 RNA reads를 얻었으며, Trinity와 TGICL을 이용한 De novo 어셈블리 분석을 통해 18,172개의 unigenes를 생성하였다. 생성된 unigenes는 GO, KOG, KEGG, PANM DB를 활용하여 annotation을 진행하였다. 그 결과, GO 분석에서는 ‘binding and catalytic activities’와 관련된 항목이 높은 발현을 보였으며, KOG 분석의 경우 ‘Cellular Processes and Signals’ 범주가 높은 비율을 나타내었다. KEGG 분석을 통해 2,118개의 unigenes가 metabolic 카테고리에 annotation된 것을 확인하였다. SSR 모티프 분석에서는 AT/AT (42.90%) 모티프, AAT/ATT (13.13%) 모티프 순으로 많이 나타나는 것을 확인하였다. 이 연구를 통해 분석한 결과 들을 이용하여 유전자원 및 종 정보를 실시간 제공 및 정보 공유가 가능하도록 Database 및 web-interface를 구축하 였으며, 이러한 자료들은 국내 멸종위기종인 수염풍뎅이의 고유한 유전적 특성을 발굴 및 확보할 수 있는 기반자 료로써 활용될 수 있을 것으로 사료된다.
장내 미생물 군집은 소화 과정, 면역 시스템, 질병 발생 등 숙주의 다양한 면에 광범위한 영향을 주는 것으로 알려져 있으며, 주요 장내 미생물 종은 숙주의 생리 기능에 핵심적인 역할을 수행한다고 발표된 바 있다. 곤충의 장내 미생물 군집에 관한 연구가 최근 활발히 이루어지고 있으며, 이들 연구는 주로 장내 미생물 군집과 기생충, 병원체 간의 상호작용, 종간의 신호 전달 네트워크, 먹이의 소화 과정 등을 중심으로 이루어지고 있다. 이러한 연구들은 대부분 Illumina MiSeq을 활용하여 16S rRNA 유전자의 V1부터 V9 영역 중 선택된 특정 부분을 대상으로 짧은 서열 정보를 대상으로 진행되었다. 그러나, 최근에는 PacBio HiFi 기술이 상용화되면서 16S rRNA의 전장 분석이 가능할 수 있게 되었다. 이번 연구는 장수말벌(Vespa mandarinia)의 해부를 통해 gut과 carcass 부분을 분리한 뒤, 각 샘플을 Illumina MiSeq과 PacBio HiFi 기술을 활용하여 미생물 군집 간의 차이점을 확인하기 위하여 수행되었다.
Haemaphysalis longicornis는 사람과 동물에게 여러 심각한 병원체를 전달하는 주요 매개체로, 한반도에 널리 분포하고 있다. H. longicornis는 Rickettsia spp., Borrelia spp., Francisella spp., Coxiella spp., 그리고 중증열성혈소판 감소증후군 바이러스 (SFTS virus) 등을 매개하는 것으로 알려져 있다. 국내에 서식하는 H. longicornis의 미생물 군집과 관련된 연구는 많이 진행되지 않은 것으로 확인되었다. 이 연구는 한반도 내 다양한 지역에서 채집된 H. longicornis의 미생물군집 다양성을 지역별, 성장 단계 및 성별에 따라 분석하였다. 2019년 6월부터 7월까지 질병관리청 권역별기후변화매개체감시거점센터 16개 지역에서 채집한 H. longicornis의 16S rRNA 유전자 V3-V4 영역을 PCR로 증폭 후 Illumina MiSeq 플랫폼으로 시퀀싱하였다. Qiime2를 활용한 미생물 다양성 분석을 통해 총 46개의 샘플에서 1,754,418개의 non-chimeric reads를 얻었으며, 평균 126개 의 operating taxonmic unit (OTU) 을 식별하여 총 1,398개의 OTU를 확인하였다. 대부분의 지역에서 Coxiella spp.가 우점종으로 나타났으며, 특히 Coxiella endosymbiont는 가장 높은 우점도를 보이며, Coxiella burnetii와 계통 발생 학적으로 유사한 것으로 확인되었다. 이 연구를 통해 분석된 결과는 각 지역의 H. longicornis 미생물군집 데이터 베이스 구축에 활용되었으며, 이를 통해 지역별 미생물군집의 특이성을 식별할 수 있게 하였다. 이는 한반도의 H. longicornis에 의한 질병 전파 연구와 이를 통한 공중보건 개선에 기여할 것으로 기대된다.
Chitin and chitosan, abundant biopolymers from shellfish, crustaceans, and fungal hyphae, have diverse applications in food, biomedical, and industrial sectors. Also, insects offer a one of the chitin and chitosan source, yet research into the biological processes of chitin and chitosan within insects remains inadequate. To investigates the safety and benefits of insect-derived chitin and chitosan, we orally administered crab-derived and insect-derived chitin and chitosan to mice and compared RNA expression. NGS derived sequences were obtained and DEG and GO analyses were performed. This study displays a chance to progress the application of edible insects.
Recently, it is demonstrate that the invertebrates have a immune memory, called Immune priming (IP). It was partially studied that the IP is mainly regulated by epigenetic modification. Here, to understand the IP on antimicrobial peptides (AMPs) production, we investigated larval mortality and time-dependent expression patterns of AMP genes in T. molitor larvae challenged with E. coli (two-times injection with a one-month interval). Interestingly, the results indicate that the higher and faster expression levels of most AMP genes were detected compared to the non-primed T. molitor larvae. Our results may used to improve the understanding of mechanisms of invertebrate immune memory.
Pellino, a highly conserved E3 ubiquitin ligase, is known to mediate ubiquitination of phosphorylated Interleukin-1 receptor-related kinase (IRAK) homologs in Toll signaling pathway. To understand the immunological function of TmPellino, we screened the knockdown efficiency of TmPellino by injecting TmPellino-specific dsRNA into T. molitor larvae. Subsequently, we investigated the larval mortality and the tissue-specific expression patterns of antimicrobial peptide (AMP) genes against microbial challenges. Interestingly, the results indicate that the expression of many AMP genes was upregulated in the Malpighian tubules of TmPellino-silenced T. molitor larvae. This study may provide basic information to understand how Tmpellino regulates AMPs production in T. molitor.