검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 3

        1.
        2023.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The thermocatalytic decomposition of methane is a promising method for hydrogen production. To determine the cause of carbonaceous catalyst deactivation and to produce high-value carbon, methane decomposition behavior and deactivated catalysts were analyzed. The surface properties and crystallinity of a commercial activated carbon material, MSP20, used as a methane decomposition catalyst, varied with the reaction time at a reaction temperature of 900 °C. During the initial reaction, MSP20 provided a methane conversion of ≥ 50%; however, the catalyst exhibited rapid deactivation as crystalline carbon grew at surface defects; after 15 min of reaction, approximately 33% methane conversion was maintained. With increasing reaction time, the specific surface area of the catalyst decreased, whereas crystallinity increased. The R-square value of the conversion–crystallinity relationship was significantly higher than that of the conversion–specific surface area relationship; however, neither profile was linear. The activity of the activated carbon catalyst for methane decomposition is mainly determined by the complex actions of the specific surface area and defect sites. The activity was maintained after an initial sharp decline caused by the continuous growth of crystalline carbon product. This study presents the application of carbonaceous catalysts for the decomposition reaction of methane to form COx- free hydrogen, while simultaneously yielding porous carbon materials with an improved electrical conductivity.
        4,200원
        2.
        2023.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        To investigate the effect of the catalyst and metal–support interaction on the methane decomposition behavior and physical properties of the produced carbon, catalytic decomposition of methane (CDM) was studied using Ni/SiO2 catalysts with different metal–support interactions (synthesized based on the presence or absence of urea). During catalyst synthesis, the addition of urea led to uniform and stable precipitation of the Ni metal precursor on the SiO2 support to produce Ni-phyllosilicates that enhanced the metal–support interaction. The resulting catalyst upon reduction showed the formation of uniform Ni0 particles (< 10 nm) that were smaller than those of a catalyst prepared using a conventional impregnation method (~ 80 nm). The growth mechanisms of methane-decomposition-derived carbon nanotubes was base growth or tip growth according to the metal–support interaction of the catalysts synthesized with and without urea, respectively. As a result, the catalyst with Ni-phyllosilicates resulting from the addition of urea induced highly dispersed and strongly interacting Ni0 active sites and produced carbon nanotubes with a small and uniform diameter via the base-growth mechanism. Considering the results, such a Ni-phyllosilicate-based catalyst are expected to be suitable for industrial base grown carbon nanotube production and application since as-synthesized carbon nanotubes can be easily harvested and the catalyst can be regenerated without being consumed during carbon nanotube extraction process.
        4,300원
        3.
        2019.12 KCI 등재후보 구독 인증기관 무료, 개인회원 유료
        This study aimed to examine the effect of a mild elevation in serum cholesterol level in a porcine coronary overstretch restenosis model using a balloon angioplasty catheter or drug-eluting coronary stent. Pigs were divided into two groups and were fed a commercial normal diet (CND, n = 4) or a high-fat diet (HFD, n = 4) for 5 weeks. Coronary overstretch injury by balloon angioplasty or stent implantation was induced in the left anterior descending and left circumflex artery after 1 week of feeding. Histopathological analysis was performed at 4 weeks after coronary injury. During the experiment, the total cholesterol level in the HFD group increased by approximately 44.9% (from 65.9 ± 3.21 mg/dL at baseline to 95.5 ± 9.94 mg/dL at 5 weeks). The lumen area in the CND group was reduced in comparison with that in the HFD group after balloon angioplasty. After stent implantation, the injury score showed no significant difference. There were significant differences in the neointimal area (2.7 ± 0.33 mm2 in the CND group vs. 3.3 ± 0.34 mm2 in the HFD group, p<0.05), lumen area (2.6 ± 0.54 mm2 in the CND group vs. 2.0 ± 0.33 mm2 in the HFD group, p<0.05), and percent area stenosis (52.0 ± 7.96% in the CND group vs. 62.4 ± 5.15% in the HFD group, p<0.05). Body weight change was not different between the two groups. Increased serum cholesterol level activated vascular smooth muscle cell proliferation in the porcine coronary overstretch model.
        4,000원