검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 9

        1.
        2023.05 구독 인증기관·개인회원 무료
        As the importance of radioactive waste management has emerged, quality assurance management of radioactive waste has been legally mandated and the Korea Radioactive Waste Agency (KORAD) established the “Waste Acceptance Criteria for the 1st Phase Disposal Facility of the Wolsong Lowand Intermediate-Level Waste Disposal Center (WAC)”, the detailed guideline for radioactive waste acceptance. Accordingly, the Korea Atomic Energy Research Institute (KAERI) introduced a radioactive waste quality assurance management system and developed detailed procedures for performing the waste packaging and characterization methods suggested in the WAC. In this study, we reviewed the radioactive waste characterization method established by the KAERI to meet the WAC presented by the KORAD. In the WAC, the characterization items for the disposal of radioactive waste were divided into six major categories (general requirements, solidification and immobilization requirements, radiological, physical, chemical, and biological requirements), and each subcategories are shown in detail under the major classification. In order to satisfy the characterization criteria for each detailed item, KAERI divided the procedure into a characterization item performed during the packaging process of radioactive waste, a separate test item, and a characterization item performed after the packaging was completed. Based on the KAERI’s radioactive waste packaging procedure, the procedure for characterization of the above items is summarized as follows. First, during the radioactive waste packaging process, the characterization corresponding to the general requirements (waste type) is performed, such as checking the classification status of the contents and checking whether there are substances unsuitable for disposal, etc. Also, characterization corresponding to the physical requirements is performed by checking the void fraction in waste package and visual confirmation of particulate matter, substances containg free water, ect. In addition, chemical and biological requirements can be characterized by visually confirming that no hazardous chemicals (explosive, flammable, gaseous substances, perishables, infectious substances, etc.) are included during the packaging process, and by taking pictures at each packaging steps. Items for characterization using separate test samples include radiological, physical, and chemical requirements. The detailed items include identification of radionuclide and radioactivity concentration, particulate matter identification test, free water and chelate content measurement tests, etc. Characterization items performing after the packaging is completed include general requirements such as measuring the weight and height of packages and radiological requirements such as measurements of surface dose rate and contamination, etc. All of the above procedures are proceduralized and managed in the radioactive waste quality assurance procedure, and a report including the characterization results is prepared and submitted when requesting acceptance of radioactive waste. The characterization of KAERI’s radioactive waste has been systematically established and progressed under the quality assurance system. In the future, we plan to supplement various items that require further improvement, and through this, we can expect to improve the reliability of radioactive waste management and activate the final disposal of KAERI’s radioactive waste.
        2.
        2016.10 구독 인증기관·개인회원 무료
        Pseudococcus longispinus, a notorious cosmopolitan pest species of mealybugs, known to be distributed indoors in Korea since 2002, is found to be mixed with another species, Pseudococcus orchidicola. Finding P. orchidicola as a pest of tropical plants in Korea is rather unexpected because of their main distribution in Pacific area and South Asia. However, all the available information from morphology, molecule and advices on identification from mealybug specialists indicated this is best matching P. orchidicola. Morphological, molecular and some biological notes on P. orchidicola are provided with some adult and nymphal images, and compared with P. longispinus. A full discussion mainly on identity and distribution of P. orchidicola is given.
        3.
        2012.09 구독 인증기관 무료, 개인회원 유료
        Probiotics, enzymes, organic acids, oligosaccharides, antioxidants, and other functional materials are actively being explored as alternatives to antibiotics. Probiotics include live beneficial microorganisms that colonize the intestinal tract and competitively inhibit attachment and growth of harmful microbes. Probiotics also increase feed efficiency by assisting in nutrient absorption and digestion. The current study was conducted in order to evaluate the effect of a new probiotic, CS-A, as a dietary supplement of a fermented product on growth performance, feed intake, and feed conversion efficiency in broiler chickens, and to evaluate its value as an alternative for antibiotics used as a feed additive. Antibacterial and anti-inflammatory effects of CS-A were investigated in vitro and the in vivo effects of a constant concentration of supplemented CS-A on growth rate and feed efficiency were evaluated. In addition, the safety of CS-A was assessed by examination of common symptoms and mortality. Determination of minimal inhibitory concentration revealed an excellent antibacterial effect of CS-A. Cytotoxicity was low and anti-inflammatory effects were achieved at the effective concentration of CS-A. Supplementation with 0.1% CS-A resulted in a feed efficiency score of 1.84 in broilers, compared to 2.00 in the control group. There were no adverse clinical findings, necropsy findings, hematology, and altered serum biochemistry parameters, and no mortality. Thus, it is concluded that CS-A is safe and effective as a feed additive.
        4,000원
        4.
        2003.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The biosensor technology, which makes it possible to detect biomaterial such as protein, pathogen, and small molecules, is useful in such areas as diagnosis, bioprocessing, and food analysis or safety. For the development of a highly sensitive biosensor, immobilization techniques of organic/bio films on solid substrate, and detection methods of protein-protein reactions appearing in a few nanometers region from the sensor surface should be established. In this review, several immobilization techniques and detection methods are reviewed based on the articles reported recently.
        4,000원
        7.
        2017.04 KCI 등재 SCOPUS 서비스 종료(열람 제한)
        본 연구에서는 토마토를 일정한 기간(15일) 동안 저장하여 토마토의 품질인자인 감모율, 색상과 경도를 분석하고 비 파괴적 방법으로 토마토 경도를 측정한 결과로 경도와 감모율 사이의 상관관계를 분석하고 선형회귀모델을 도출하여 토마토 품질을 예측하고자 하였다. 그린하우스에서 재배된 ‘티와이250’품종을 수확한 후 일반 과실 종이 박스에 포장한 후 설정환경이 10℃, 90%RH인 항온항습챔버에 저장하여 3일 간격으로 경도, 무게와 색상 변화를 조사하였다. 15일간 저장 중 감모율은 저장기간이 증가함에 따라 증가하나 1.1% 정도에 머물러 단순히 감모율 인자로만 판단했을 때 토마토의 신선도 품질에 영향 끼치는 수준은 아니다. 색상변화 중 명도와 색조 각은 저장기간의 증가에 따라 감소하는 경향을, a/b와 ΔE는 증가하는 경향을 나타냈었고 일원분산분석결과를 볼 때 유의한 수준이었다(p<0.001). 경도는 저장기간이 증가함에 따라 감소하는 경향을 나타냈으며 저장 15일차에는 경도감소율이 40% 이상인 것으로 나타났다. 그리고 비 파괴방법으로 측정한 경도 값과 감모율 사이의 상관관계를 분석하여 선형회귀모델 WL=-0.0241×F+1.5213을 하였으며 모델의 추정치 오차는 ±0.231이었다. 이러한 결과에 비추어볼 때 수확 후 일정한 저장환경에서 비파괴적인 경도 측정을 통해 감모율을 추정하고 신선도를 판단하는 지표고 사용하는 것이 가능한 것으로 판단되었다.