Regarding therapies for treatment of corneal wounds, ex vivo corneal culture is the most effective for minimizing expensive animal studies. Eighteen porcine enucleated eyes were soaked in 0.2% povidone iodine solution for disinfection prior to cornea excision. Subsequently, corneas were excised from whole eyes and filled with an agar/medium mixture. Corneas were transferred into culture dishes, after which culture medium was added until the limbus was covered. Cultures were then placed onto a plate rocker to mimic blinking action, followed by incubation at 37°C and 5% CO2. Corneas were harvested on Days 0, 3, and 7 after incubation, and optical coherence tomography (OCT) was performed on Day 7. Two eyes from each group were fixed in 2% glutaraldehyde/4% paraformaldehyde for low-vacuum scanning electron microscopy (LV-SEM), and four eyes from each group were fixed in 10% neutral-buffered formalin for histological analysis. OCT results showed that central corneal thickness significantly increased by Day 7 compared to Day 0 (P<0.05). Using LV-SEM, gaps between endothelial cells were detected on Day 7 of ex vivo culture. In the histological evaluation, four to five stratified squamous cell layers, wing cells, and basal cells in the epithelium as well as flat-shaped keratocytes in the stroma were found on Day 0. By Day 7, stratified squamous cells and basal cells had decreased in number, and slightly round-shaped keratocytes were observed; however, the number of keratocytes was similar to that on Day 0. In this short-term ex vivo culture, epithelium and endothelium were sensitive to culture, whereas stroma and keratocytes were well maintained. An additional deswelling method will be needed to obtain more successful results in porcine corneal ex vivo culture.
Antibiotics have been used to prevent disease, promote growth rate, and improve feed efficiency. However, the use of antibiotics in livestock has been restricted worldwide due to problems such as bacterial resistance. Therefore, probiotics among alternatives to antibiotics have gained attention in the livestock feed industry these days. This study was conducted to investigate the effects of dietary supplementation with probiotic 379D on safety, growth rate, and feed efficiency. In this study, bacterial strain 379D was isolated from soil and identified as a Bacillus sp. according to 16S rRNA sequence analysis. In an in vitro test, in-gel activity assay and antimicrobial susceptibility test were conducted to evaluate 379D. In an in vivo study, 379D was administered at concentrations of 0.1% and 1% to broiler chickens for 28 days. The results of in-gel activity assay and antimicrobial susceptibility test showed that strain 379D had broad spectrum antimicrobial activity. Furthermore, no adverse 379D-related effects were observed in 0.1% and 1% groups. Feed efficiency was higher in the 379D-treated groups than in the control group. In conclusion, 379D is expected to be used as a safe alternative to antibiotics in a feed supplement and will improve feed efficiency in broiler chickens.
The current study was conducted to evaluate the biocompatibility of α-1,3 galactosyltransferase knockout pig bone graft in a rat calvarial defect model. Porcine cancellous bones were harvested from general and alpha-gal KO pigs and washed with 70% ethanol solution and normal saline. Bone pieces of the alpha-gal KO pig underwent a chemical treatment process to delipidize and deproteinize the bone. Bone graft particles were freeze-dried and stored at −70°C until use. Each bone graft was implanted into the rat calvarial defect in a fresh general pig, fresh transgenic pig, and chemical-treated pig bone group. There was no systemic adverse effect on hematology or necropsy findings in all groups at 1 week and 4 weeks. In the microcomputed tomography analysis, bone volume increased significantly in the chemical-treated transgenic pig bone group, whereas bone mineral density decreased significantly in the fresh general pig bone group compared with other groups. Histological evaluation showed cellular infiltration located at the margin of the bone graft particles, especially in the fresh general pig bone group. These results indicate that fresh general pig bone can elicit a greater local inflammatory response than fresh transgenic pig bone. Further, chemical-treated transgenic pig bone graft was less immunogenic than fresh bone graft. In conclusion, transgenic pig bone is a more biocompatible graft material. In addition, chemical treatment can reduce bone graft immunogenicity by delipidizing and deproteinizing bone.
This study evaluated the possibility of clinical application using matrigel-based bioceramic/polymer scaffolds treated with bone morphogenetic protein, angiogenic factor, and mesenchymal stem cells (MSCs) for new bone formation. In the in vitro study, bone morphogenetic protein (BMP-2) and vascular endothelial growth factor (VEGF) containing matrigel, which is a basement membrane gel, was injected into HA/PCL scaffolds to estimate the release rates of growth factors. In the in vivo study, BMP-2, VEGF, and MSCs with matrigel-based scaffolds were implanted into rat femoral segmental defects, and new bone formation was evaluated at 4 and 8 weeks. In the results, the release rates of BMP-2 and VEGF explosively increased by day 5. For the in vivo study results, radiological evaluation revealed that the matrigel-based HA/PCL scaffolds with BMP-2 and VEGF grafted (M+B+V) and matrigel-based HA/PCL scaffolds with BMP-2, VEGF, and MSC grafted (MSC) groups showed increased bone volume and bone mineral density. Moreover, in the histological evaluation, large new bone formation was observed in the M+B+V group, and high cellularity in the scaffold was observed in the MSC group. In conclusion, grafted matrigel-based HA/PCL scaffolds with BMP-2, angiogenic factor, and MSCs increased new bone formation, and in clinical cases, it may be effective and useful to enhance healing of delayed fractures.
In the livestock feed industry, antibiotics are used to prevent disease, promote growth rate, and improve feed efficiency. However, antibiotic supplementation to animal feed results in increased bacterial resistance to antibiotics as well as antibiotic residues in animal products, which can negatively affect human health. Therefore, alternative sources of antibiotics are need- ed. Probiotics as an alternative to antibiotics in animal feed have been shown to increase feed efficiency and growth rate by improving microbial balance. Further, Bacillus sp. produces a wide spectrum of antibacte- rial peptides. The present study was conducted to investigate the effects of dietary supplementation with CS-32 on safety, growth rate, and feed efficiency. Antibacterial substance (5697.9 molecular weights) produced by CS-32 was isolated and purified from culture broth. Moreover, the results of minimal inhibi- tory concentration (MIC) test confirmed the excellent antibacterial effect of CS-32. In vivo, 0.1% and 1% CS-32 were fed to broiler chickens for 28 days. Feed efficiency was slightly higher in groups of chickens supplemented with 0.1% and 1% CS-32 than those of the control group. CS-32 had no significant effect on necropsy findings, hematology, or serum biochemistry, and there was no mortality. These results suggest that CS-32 among various biologically active substances may be safe and effective as a feed additive to improve growth rate and feed efficiency.
The current study was conducted in order to investigate bone formation using matrigel and angiogenic factors with HA and poly ε-caprolactone (HA/PCL) in a rat calvarial defect model. Calvarial defect formation was surgically created in Sprague Dawley rats (n=36). Rats in the control group (CD group, n=6) did not receive a graft. The HA/ PCL scaffold was grafted with matrigel (M-HA/PCL group, n=6) or without matrigel (HA/PCL group, n=6); and 100 ng of vascular endothelial growth factor with HA/ PCL scaffold containing matrigel (VEGF100 group, n=6), 100 ng (PDGF100 group, n=6) and 300 ng (PDGF300 group, n=6) of PDGF with HA/PCL scaffold containing matrigel were grafted in calvarial defects, respectively. Four weeks after surgery, bone formation was evaluated with micro computed tomography (micro CT) scanning, and histologically. According to the results, bone mineral density was significantly increased in the VEGF100, PDGF100, and PDGF300 groups compared to the HA/PCL group, in which angiogenic factors were not applied. In histological evaluation, more new bone formation around scaffolds was observed in the PDGF100 and the PDGF300 groups, compared with the VEGF100 group. Thus, the results indicate that HA/PCL containing matrigel with VEGF and PDGF is an effective grafting material for enhancement of bone formation in critical-sized bone defects. Especially, due to its price and capacity for bone formation, PDGF may be more effective than VEGF.
This study was conducted in order to examine the effects of alcohol-free cetylpyridinium chloride drinking water additive and oral gel on clinical parameters related to periodontal disease in beagle dogs. This study was conducted with healthy 15 beagle dogs. Following a professional teeth cleaning procedure, dogs were divided into three groups. Dogs in the control group received nothing, those in the drinking water additive (DWA) group received 800 ml water with 15 ml of alcohol-free cetylpyridinium chloride drinking water additive daily, and those in the Oral gel (OG) group were treated with oral gel containing alcohol-free cetylpyridinium chloride and 0.05% chlorhexidine gluconate daily. Clinical parameters, including plaque index (PI), calculus index (CI), and gingivitis index (GI) were evaluated at two and four weeks. Dogs in the DWA and OG groups had significantly less plaque than dogs in the control group at two and four weeks (P<0.01, P<0.05). And, at four weeks, CI was significantly lower in the OG group compared to the control group (P<0.05). On GI, similar scores were recorded for all groups during the experimental period. No significant difference was observed between the DWA group and the OG group. The effect of alcohol-free cetylpyridinium chloride drinking water additive was similar to the result for alcohol containing cetylpyridinium chloride mouthwash reported in a previous study. The effect in control of periodontal disease was better in the OG group because of additional chlorhexidine gluconate. However, use of drinking water additive will be more convenient for owners; thus, it will be more effective for achievement of long-term results.
Vital pulpotomy is a very useful method for disarming of canine tooth, tooth fracture, periodontitis, and malocclusion in veterinary dentistry. Calcium hydroxide is the material commonly used as a liner during vital pulpotomy. This creates a mineralized barrier by stimulating osteoblastic hard tissue repair, arrests the inflammatory response, and soothes dentin. However, the powder or mix type calcium hydroxide materials have many disadvantages due to complicated procedures for use and are hard to handle when vital pulpotomy is followed under general anesthesia in animals. This study was conducted in order to compare the effect of mix and premixed paste type calcium hydroxide as a liner in vital pulpotomy. Six beagle dogs underwent hemisection on the mesial root of the mandibular first molar and vital pulpotomy on the distal root of the first molar. On the distal root of the left and right mandibular first molar, mix type (DYCAL®, Dentsply, USA) and premixed paste type calcium hydroxide (VITAPEX®, Morita, Japan) were used as liners, respectively. Radiological evaluation was performed at immediate, 4, 12, and 20 weeks after vital pulpotomy. According to the results, all teeth had well-formed dentinal bridges, and there were no periradicular lucency, lamina dura loss, or anomalies of the pulp cavity. According to these results, on vital pulpotomy in animals, premixed paste type calcium hydroxide was easy to handle and decreased the anesthesia period due to a more convenient application procedure. A further study of many clinical cases is needed for evaluation of side effects and other problems.
Probiotics, enzymes, organic acids, oligosaccharides, antioxidants, and other functional materials are actively being explored as alternatives to antibiotics. Probiotics include live beneficial microorganisms that colonize the intestinal tract and competitively inhibit attachment and growth of harmful microbes. Probiotics also increase feed efficiency by assisting in nutrient absorption and digestion. The current study was conducted in order to evaluate the effect of a new probiotic, CS-A, as a dietary supplement of a fermented product on growth performance, feed intake, and feed conversion efficiency in broiler chickens, and to evaluate its value as an alternative for antibiotics used as a feed additive. Antibacterial and anti-inflammatory effects of CS-A were investigated in vitro and the in vivo effects of a constant concentration of supplemented CS-A on growth rate and feed efficiency were evaluated. In addition, the safety of CS-A was assessed by examination of common symptoms and mortality. Determination of minimal inhibitory concentration revealed an excellent antibacterial effect of CS-A. Cytotoxicity was low and anti-inflammatory effects were achieved at the effective concentration of CS-A. Supplementation with 0.1% CS-A resulted in a feed efficiency score of 1.84 in broilers, compared to 2.00 in the control group. There were no adverse clinical findings, necropsy findings, hematology, and altered serum biochemistry parameters, and no mortality. Thus, it is concluded that CS-A is safe and effective as a feed additive.
“Younbaek”, a new noodle making wheat cultivar, was developed from the cross between “Keumkang” with white grain color and “Tapdongmil” by the Honam Agricultural Research Institute(HARI), National Institute of Crop Science (NICS), RDA, Korea in 2005. Amon