In this study, we used underwater acoustics to analyze the spatial and temporal distribution characteristics of largehead hairtail (Trichiurus leptueus) based on the luminous thronging of metal halide fishing lamps and induction fishing lamps. As a result, the illuminating power was approximately 1.3 times higher using the metal halide fishing lamp whereas the density of hairtals by distance was approximately 1.9 times higher using the induction fishing lamp. Regarding water depth distribution, hairtails were detected depths of 25-30 m during August and at all water depths in November as assessed using fishing lamps.
This study describes the result on PV system for evaluating the performance of small fishing boats. Photovoltaic system with 200 watts power generation facilities on the 3-ton fishing boat was carried. Load test was performed on the condition that the work lamps lit during night operations. As a result the performance can be used for more than two hours at 60 watt work lamps. The load test was performed on the condition that fishing vessels are on the cruising condition at sea. The solar power systems have been investigated as a power generation efficiency of about 36.55%. Additional tests show that the power generation efficiency is difficult to expect a maximum of 50% or more.Fuel consumption of fishing boats by installing a solar power system is reduced. Also the PV system is useful for the verification of their availability for fishing vessels as well as the satisfaction of the fishermen. The results for the durability of the photovoltaic device is acceptable, including a solar panel, controller and the performance exhibited no breakage in the harsh marine environment or failure so far. The installed PV system was confirmed that the durability with at least 2 years.
The sea cage in marine aquaculture might be varied such as on the stability and shape in the open sea by environmental factors. To evaluate the stability of net cage structures in the open sea, the physical and numerical modeling techniques were applied and compared with field observations. This study was carried out to analyse the stability and the volume loss which would have an effect on the fish swimming behavior in the octagonal pillar type fish cage under the open sea. As a results, the volume loss ratio of the fish cage as measured using a depth sensor was indicated a value of the 30.3% under the current velocity (1.1m/s). The fish cage should be consisted of a concrete block with a weight over 10 tons, a mooring rope diameter over 28mm PP, and a shackle of 25mm under the current speed of 1m/sec for reasonable stability.
The purpose of the study is to estimate the Green-House-Gas (GHG) emissions from domestic eel farm in the water recirculation system or still-water system by the assessment of energy consumptions and GHG emissions for establishing to reduce standards of GHG from a sustainable perspective. GHG emission components as seeds, feed, fuel, electricity, fixed capital, fish respiration, and others were analysed at the different culture type between water recirculation system and still-water system by 3 stage farm size of small, medium, large scale. The result showed that the mean GHG emission of the eel farm was 18.7kg·CO2 in the stage of production per fish 1kg at different culture type and farm size. Therefore it could be useful for policy, planning, and regulation of aquaculture development with establishing GHG reduction standards.
The performance of five kind adsorbents, which can reduce nitrogen oxide (NOx) from the diesel engine occupying 85% of the fishing boat, was carried out and the emission reduction filter was manufactured and evaluated in the adsorption efficiency of the emission gas for 240 KW diesel portable generator. As a NOx emission filter made of mordenite which has an excellent cation exchange capacity was manufactured by ball type adsorbents having excellent specific surface area. The adsorption efficiency of mordenite material applying the emission reduction filter began to show up at the operating time 10 minutes in comparison with the activated carbon and zeolite materials, and it was exposed to continue until 100% capability with passing by 20 minutes. So the adsorption efficiency of the NOx reduction filter consistently maintained at the averaged 80%.
To compare the catches made using gillnets, trammel nets, and gillnets with supporting lines, several experiments were conducted with commercial vessels near Uljin and Pohang in Eastern Korea between July 2010 and May 2011. Two sets of 13 different nets were used, including 5 panels of gillnets and trammel nets each with stretched mesh sizes of 7.6, 9.1, 10.6, 12.1, and 13.6 cm and 3 panels of gillnets with a mesh size of 9.1 cm with supporting lines with different line spacing. The outer (stretched) mesh size of the trammel nets measured 51.5 cm. The target fishes of the fishing nets were various types of flounders. The catch rate of flounders was 50.7% of the total catch in weight. The total catch for all nets was 443.8 kg. The predominant species was pointhead flounder (Cleisthenes pinetorum). The total catch by trammel nets was 1.4 times that of the comparable gillnets. But more pointhead flounder were caught by gillnets than by trammel nets, though there was no significant difference. Fishermen catching the pointhead flounder in Korea said that there was no need to use trammel net to catch it; this was an unexpected finding compared to the findings of other flounder fisheries. The amounts of roughscale sole, brown sole, and blackfin flounder caught by trammel nets were greater than those caught by gillnets. The mean lengths (standard deviation) of blackfin flounder, pointhead flounder, brown sole, and roughscale sole were 21.0 (4.57), 22.9 (3.40), 24.7 (4.90), and 28.3 (5.43) cm, respectively; there were significant differences in mean length (p < 0.00001). Therefore, in order to catch flounder efficiently, the fishing nets and mesh size should be chosen according to the target species. One advantage of using supporting lines is that it prevents breakage by strengthening the material especially when utilized on a rough bottom. Catch by using gillnet with supporting lines was not greater than that by using trammel net for the conservation of fisheries resources.
This study evaluated the hazard caused by NO2, an oxidant generated in the process of welding. We compared hematological and biochemical parameters in workers who chronically inhale NO2 and office workers not exposed to NO2. NO2 exposure affected the hematological and biochemical parameters. Increasing NO2 concentrationincreased the number of leukocytes, while decreasing the number of erythrocytes. Blood urea nitrogen, creatinine, uric acid, and lactate dehydrogenase were increased, while total protein and triglycerides were decreased. The mean concentration of NOx(NO2-/ NO3-) in the serum of welders and the control group was 35.97±2.85 and 55.40±5.81 μmol/L, respectively. The difference was significant (p<0.05), although NO2- was not detected in the serum.