최근 우리나라 서・남해안에 대량 유입되고 있는 괭생이모자반은 매년 그 양이 증가하고 있으며, 항해 및 양식시설 등에 피해를 주고 있다. 또한 막대한 비용 및 인력을 동원하여 수거한 후에도 그 처리에 어려움을 겪고있다. 우리나라 해안에 유입되는 양이 매년 증가하고 있어 괭생이모자반에 대한 적절한 처리방안 대책이 시급한 실정이다. 해조류는 바이오에너지 회수를 위한 바이오매스로 주목을 받아, 에너지 전환 공정에 대한 연구가 활발히 진행되고 있다. 괭생이모자반은 해조류 중 갈조류에 속하며 바이오매스로서의 잠재성이 높을 것으로 판단된다. 그러나 바다에서 수거/수확된 해조류에는 해수 속 염분이 일부 묻어 있을 것으로 사료되며, 이 단계에서 해조류 관리와 후속 공정과의 연구는 현재 미미하다. 이에 본 연구에서는 바다에서 수거된 괭생이모자반을 대상으로 수거직후 관리(세척여부)에 따라 바이오에너지 전환 공정 중 당 가수분해에 미치는 영향에 대하여 검토하였다. 세척시료와 미세척시료를 대상으로 강열감량 후 회분의 전기전도도 값을 측정한 결과, 미세척시료가 2.28 mS/cm로 세척시료보다 1.64배 높았으며, 이때 회분의 약 73%가 염분으로 나타났다. 세척과정을 반복적으로 실시하여 배출된 세척수의 전기전도도를 측정한 결과, 3회 세척 후 세척수 전기전도도는 1회 세척 후 결과 값의 88%가 감소하여, 해조류 표면에 묻은 염분은 반복되는 세척과정에서 상당부분 제거됨을 확인하였다. 세척여부는 당 가수분해 공정에도 영향을 미쳤으며, 특히 효소를 이용한 생물학적 가수분해 공정에 저해효과가 큰 것으로 나타났다.
바이오매스의 저장 및 취급 여건은 바이오매스의 형태 및 종류에 매우 달라진다. 바이오매스의 종류는 매우 다양하며, 어떻게 저장하고 취급할지는 바이오매스의 특성에 따라 달라진다. 바이오매스의 저장시설은 어떠한 조건에서도 지속적인 원료공급, 자체 영양물질의 감소와 분해를 저감시키기 위한 것이다. 한편, 저장시설 내부에서는 저장물의 물리적, 생화학적, 생물학적 그리고 화학적 반응 등에 의해 내부 온도가 상승하고, 온도상승에 의한 자연발화에 의한 화재 및 폭발 등의 안전성이나, 곰팡이 생성 등의 위생적인 면에서 문제될 수 있다. 특히 저장기간 동안 또는 저장 후 바이오매스의 수분함량은 원료의 적합성과 밀접한 관계가 있다. 대부분의 목재 및 농업부산물과 같은 바이오매스는 4–50% 범위의 수분함량을 가지고 있으며, 음식물류 폐기물은 최대 94%의 수분함량을, 혼합 도시고형폐기물 중 유기물의 평균 수분함량은 53.7%의 수분함량을 나타낸다고 보고하고 있다. 일반적으로 에너지회수 시설에 사용되는 바이오매스는 수분함량이 낮아야 한다. 이에 본 연구에서는 현재 이용되고 있는 바이오매스 저장시설의 종류 및 형태, 그리고 발생 가능한 문제점에 대하여 조사하였으며, 저장 기간 동안 수분함량에 따른 바이오매스의 물리·화학적 조성 변화에 대하여 검토하였다.
전 세계적으로 플라스틱의 사용량은 꾸준히 증가하고 있는 추세이다. 그 결과, 해양쓰레기 중 플라스틱의 비중은 60~80%로써 높은 비중을 차지하고 있다. 플라스틱 중에서도 미세플라스틱은 5mm 미만의 플라스틱 조각으로서 인위적으로 제조된 1차 미세플라스틱과 물리・화학적으로 인한 파쇄나 분해에 의한 2차 미세플라스틱으로 나눌 수 있다. 이러한 미세플라스틱은 생물증폭(Biomagnification)과 생물농축(Bioaccumulation)이 우려되고 있다. 최근 미세플라스틱의 관심이 대두되면서 미세플라스틱의 정량・정성분석에 대한 문헌이 증가하는 추세이지만, 정량에 사용하는 단위는 연구자마다 상이하여 상호 비교가 어려운 현실이다. 또한 시료의 상태에 따라 유기물분해, 밀도차선별을 선별적으로 적용해야 한다. 특정 환경매체에서 정량・정성분석의 결과는 배출원별 배출량과 함께 고려해야 한다. 국외의 경우 미세플라스틱의 배출원별 배출량에 관한 연구가 이미 진행되었으나, 우리나라의 경우 관련된 연구는 찾아볼 수 없다. 이에 본 연구에서는 국외 선행연구에서 사용한 기법을 적용하여 우리나라에서 배출되는 미세플라스틱의 양을 추정하였다. 그 결과, 1차 미세플라스틱 배출량이 2차 미세플라스틱 배출량보다 약 10배 많은 것으로 나타났다.
Marine wastes could be divided into coastal, sink and floating waste by the distribution location. From the results of standing stock estimation of the marine wastes, the amount of coastal waste was similar to the results of previous study, that of sink waste was higher in this study as much as 1.47 to 2.83 times, and that of floating waste was estimated to be higher up to approximately 2.3 times in this study. Overall, the total amount of marine waste in the sea of our country is estimated at 180,148 ~ 331,197 tons, being 1.43 to 2.63 times higher than the results of previous study.
We investigated optimal conditions for the hydrolysis of Laminaria japonica using a single enzyme such as Celluclast 1.5 L, Saczyme, and alginate lyase, for the production of reducing sugar. Redesigned experimental conditions including the optimal conditions determined for the single enzyme were proposed, and the hydrolysis of Laminaria japonica was also performed with a mixture of enzymes. The reducing sugar yield with the mixed enzymes was lower than that with Celluclast 1.5 L, which showed the highest efficiency among the enzymes used. Considering the reducing sugar yield and economics, it would seem that hydrolysis by mixed enzymes had no advantage. The coefficient of determination (R2) of Y1 (the yield of reducing sugar by Celluclast 1.5 L) was 0.89. The P value of Y1 was < 0.001, indicating statistical significance. By the response surface methodology (RSM), the optimum reaction conditions for hydrolysis of Laminaria japonica by Celluclast 1.5 L were determined to be enzyme of 8.0%, a reaction time of 26.4 h, a pH of 4.0, and a temperature of 42.6oC, resulting in the production of 117.7 mg/g-Laminaria japonica.
Lead leached out from the metal lead-sinker attached to fishing nets or contained in ropes are likely to cause the environmental contamination, consequently, resulting in ecotoxicity. However, it is very difficult to find out the data on the disposal reality of fishing nets, lead-containing form of/in fishing net and its content. In previous studies, we presented the containing form of lead and the lead concentration leached out by the containing forms. As a result, the leaching concentration of lead was the highest under the supposition condition of lead-sinker deposited on sandy tidal flat. In this study, as a subsequent study, we investigated long-term leaching characteristics from lead-sinker deposited on sandy tidal flat. We used a serial batch leaching experiment to investigate the long-term leaching characteristics, and the experimental conditions were as follows; solid to liquid ratio 1:20, shaking time 24 hours (repetition of 7 times), room temperature, and shaking rate 170 rpm. As a result, lead leaching concentration after shaking for 24 hours was 0.215 mg/L, showing the highest leaching concentration, and then the leaching concentrations between 2-7 times were greatly decreased. Analysis result by Visual Minteq 3.1 said most of the leached lead component could be extracted as crystal such as Anglesite (PbSO4), Cerrusite (PbCO3), Cotunnite (PbCl2), and Pb(OH)2 by sulfate and carbonate in seawater.
본 연구에서는 수입에 의존하고 있는 고산도 식초 생산 기술을 대체하고자 포도과즙을 이용하여 적정산도 10% 이상의 식초 제조조건 및 품질특성을 조사하였다. 초기 알 코올 함량에 따른 고산도 초산발효에서는 초기 알코올 함량 6%에서 적정산도 12%의 고산도 식초 제조가 가능하였으 며 초기 알코올 함량이 높을수록 유도기가 길어져 초산수율 이 감소하였다. pH는 구간에 따른 큰 차이가 없었고, 당도는 1단계 초산발효(1st AAF)까지 초기 알코올 함량에 비례하 여 높게 나타났으나 2단계 초산발효(2nd AAF)기간 동안에 는 초기 알코올 6% 첨가구에서 증가율이 가장 높았다. 고산 도 포도식초의 주요 유기산은 tartaric, malic 및 citric acid가 검출되었으며, 유가식 첨가량 및 초산 발효수율 차이로 인 하여 초기 알코올 함량이 낮을수록 높게 검출되었다. 미량 알코올 중 ethyl alcohol을 제외한 성분은 극소량으로 검출 되어 초기 알코올 함량에 따른 큰 차이가 없었고, ethyl alcohol은 364∼581 ppm으로 나타났다. 이상의 결과, 포도알코올 발효액(초기 알코올 함량 6%)를 이용하여 일체의 영양원을 첨가하지 않고 총산도 12%의 고산도 식초 제조가 가능하였다. 그러나 산업적으로 활용하기 위해서는 초산수 율 향상 및 유가식 첨가에 의한 발효기간 단축에 관한 보완 연구가 요구되었다.
Bioethanol was produced from Laminaria japonica hydrolystaes by sequential acidic (0.108 N HCl)/distilled water and enzymatic hydrolysis (Celluclast® 1.5 L) using Saccharomyces coreanus immobilized into/on aluminum silicate. Reducing sugar were hydrolyzed 140.5 and 122.7 mg/g-dry biomass under a acidic-enzymatic condition and a distilled waterenzymatic condition, respectively. In addition, the 8 repetition batch fermentations were carried out with the immobilized S. coreanus to verify the advantage of immobilization cell. As a result, we can obtain the ethanol of 12.1 ~ 24.3 mg/gdry biomass, and reuse the support, aluminium silicate, for 8 repetition batch fermentations without any breakdown.
In this study, microcrystalline cellulose, which is a cell wall polysaccharide commonly contained in sea algae (brown algae, red algae and green algae), is used in substitution for cellulose and is hydrolyzed with seven enzymes available in the market. The seven enzymes selected are Viscozyme® L, Celluclast® 1.5 L, Saczyme, Novozym® 33095, Fungamyl® 800 L, Driselase® Basidiomycetes sp., and Alginate Lyase. To maximize the production of the reducing sugar by hydrolysis with each enzyme, we optimized the quantity of enzymes, reaction time, pH, and reaction temperature as four independent variables, and the reducing sugar production rate as a dependent variable, utilizing response surface methodology (RSM) to optimize the enzyme hydrolysis reaction conditions. Among the tested enzymes, the production rate of reducing sugar by Celluclast® 1.5 L was the highest. Hence, the predicted optimum conditions (8.5 % enzyme, reaction time 27.6 h, pH 4.1 and reaction temperature 44.1oC) were directly applied to Laminaria japonica and proved the predicted optimum conditions with experiments. Under the optimum conditions, the sugar yield of 137.6 mg/g-Laminaria japonica (experimental value) was obtained.
This study investigated the optimal sequential hydrolysis conditions by comparing with reducing sugar yield ofsequential hydrolysis of Laminaria japonica processing residue. After acid-catalyzed hydrothermal hydrolysis, sequentialenzymatic hydrolysis was performed with single enzymes such as Celluclast® 1.5L, Saczyme, and Alginate Lyase, andtheir mixture. As a result, the yield of reducing sugar by sequential hydrolysis with the mixed enzymes was the highest,but there would be an economical problem with excessive enzyme loading. Therefore, considering the reducing sugaryield and economics, it is thought that hydrolysis by the mixed enzymes has no advantage, thus, using the Celluclast®1.5L in the sequential hydrolysis was practically more appropriate. The optimal sequential hydrolysis conditions ofLaminaria japonica processing residue were determined to be 8% v/w of enzyme injection, 42.6oC of reaction temperature,pH 4.1, and 26 hours of reaction time after acid-catalyzed hydrothermal hydrolysis (0.108 N-HCl, 144oC of reactiontemperature, and 22 minute of reaction time).
This study focused on immobilization of Saccharomyces coreanus to support materials and ethanol fermentation bythe immobilized yeast. Three porous media as support material were surveyed; synthetic zeolite, aluminum silicate andgranular activated carbon. Amount of yeast (determined by organic matter content) immobilized into/on support materialswas lowest in fermentation using aluminum silicate as supports. Glucose as substrate of ethanol fermentation was easilysorbed more than ethanol into/on 3 types of support materials. Of these, absorbed amount of glucose and ethanol into/on activated carbon was highest. The ethanol was actively produced for 16 hours in fermentation processes by yeastimmobilized into/on aluminum silicate and activated carbon, produced after 16 hours by yeast immobilized into/on zeolite.The produced ethanol concentration after 24h was as follows; 24.2g/L by using aluminum silicate, 19.3g/L by activatedcarbon and 16.1g/L by zeolite.
To investigate optimal condition of acid-catalyzed hydrothermal hydrolysis of Laminaria japonica, the main constituentsof Laminaria japonica such as cellulose, alginic acid and mannitol were hydrolyzed using acid-catalyzed hydrothermalreaction. Then, we proposed the re-designed experimental method including the predicted optimal conditions of the mainconstituents and performed acid-catalyzed hydrothermal hydrolysis of Laminaria japonica. The coefficients ofdetermination (R2) of Y5 (yield of reducing sugar from Laminaria japonica) were 0.877. P values of Y5 were 0.002,indicating significance, within 1% (p<0.01). The optimum reaction condition for acid-catalyzed hydrothermal hydrolysisof Laminaria japonica determined by the response surface methodology is 143.65oC of reaction temperature, 22min ofreaction time, hydrochloric acid concentration 0.108N, resulting in a production rate of 115.62mg/g-Laminaria japonica.
In this study, phytocapping which was widely and deeply studied in USA and Australia was investigated among the methane oxidation technology for the surface emission reduction, and the consideration matter to apply the technology was also suggested. The selection of plants to be suitable in climate and soil condition is the key factor when phytocapping would be introduced. In the United States, a fast growing, perennial and deep-rooting tree species are used for landfill covers or contaminated soil areas, and even understory grasses are chosen based on regional characteristics. However this phytocapping would have regional limitation, especially precipitation is an important environmental factor.
To improve the conversion rate of the saccharification liquid of food wastes, containing a mixture of pentose and hexose, to bioethanol, this study aimed to investigate the fermentation characteristics by P. stipitis which is used in the fermentation of xylose as well as glucose as a substrate. Saccharification liquid of cellulosic food wastes such as Chinese cabbage, cabbage, and Chinese chive contained hexose, mainly glucose and fructose, and pentose, mainly xylose and trace disaccharide. The pentose in reducing sugar occupied 32%, meaning that the conversion rate to ethanol could be increased by the fermentation of such a pentose. From the result of ethanol fermentation, although the rate of fermentation by P. stipitis was slower than by S. coreanus, it was verified the consumption of pentose as well as hexose in the process of the forced air injection, consequently, it was confirmed the increase of ethanol yield.
To produce bioethanol from cellulosic biomass, the cellulosic biomass needs pretreatments for high efficiency saccharification. This study, thus, aims to evaluate the efficiency of several pretreatments using vegetables as a cellulosic biomass among food wastes. The evaluated pretreatment methods were acid treatment, ammonia treatment and hydrogen peroxide treatment, which were used by individual and/or incorporating method. As a result, the concentration of reducing sugar increased 4 ~ 15 times and that of glucose increased 5 ~ 26 times compared to the samples without pretreatment. The acid treatment as an individual treatment was the most efficient, and the efficiency of incorporating treatment showed higher than that of individual treatment. Besides, there were differences in the composition and content of hydrolyzed sugars although the saccharification efficiency was similar by the method of each pretreatment.
This study aimed to investigate the optimal enzymatic hydrolysis conditions of alginic acid using Viscozyme® L, Celluclast® 1.5L, Saczyme®, Novozym®, Fungamyl® 800L, Driselase® Basidiomycetes sp., and Alginate Lyase, for production of reducing sugar. Response surface methodology (RSM) based on central composite rotatable design was used to study effects of the independent variables such as enzyme (1-9% v/w), reaction time (10-30 h), pH (3-7) and reaction temperature (30-70oC) on the production of reducing sugar from alginic acid. The coefficients of determination (R2) of Y1, Y2, Y3, Y4, Y5, Y6, and Y7 for the dependent variable regression equation were analyzed as 0.947 0.968, 0.840, 0.926, 0.923, 0.892 and 0.825. And the p-value of Y1, Y2, Y3, Y4, Y5, Y6, and Y7 within 1% (p < 0.01) was very significant. The optimal conditions were 1.0% of the quantity of the enzyme, 10.0 hours of the response time, pH 3 and 70.0oC of the reaction temperature, where the production rate was 483.1 mg/g-alginic acid, the highest of all the enzymes used.
Acid hydrolysis of cellulose using hydrothermal reaction was conducted to maximize reducing sugar concentration and the response surface methodology (RSM) was applied to study the effects of independent variables, such as reaction temperature (116 ~ 184oC), reaction time (12 ~ 28 min) and hydrochloric acid concentration (HCl, 0.0159 ~ 0.1841 N) on reducing sugar concentration and production yield from the cellulose. With the optimum conditions of the acid-catalyzed hydrothermal hydrolysis, the reducing sugar (RS) was obtained as 369.14 mg-RS/g-cellulose in 172.77oC of the reaction temperature, 28.41 min of the reaction time and 0.067 N of the hydrochloric acid concentration. The glucose (Glu) was obtained as 281.94 mg-Glu/g-cellulose in 154.70oC of the reaction temperature, 11.59 min of the reaction time and 0.184 N of the hydrochloric acid concentration.
Sugar, starch and lignocellulosic biomass has been mainly used as raw materials for the production of the bioethanol. However, the sharp fluctuation of grain prices, a threat of world famine, and hardly biodegradable substance like lignin contained in lignocellulosic materials make the pre-processing of the biomass complicated in several aspects. As a result, the focus of attention has now shifted to the ‘third biomass’ such as algae, which has a high value of energy recovery. In this study, a kind of macroalgae and its characteristic were surveyed and then, the physical, biological, chemical, combined, and hydrothermal pretreatments for its hydrolysis were deeply considered. Consequently, the macroalgae could be more effectively hydrolyzed at the combined process such as the hydrothermal-chemical or biological treatment, chemical-biological treatment and so on than the single process like the biological pretreatment.