Background: In healthy dentin conditions, odontoblasts have an important role such as protection from invasion of pathogens. In mammalian teeth, progenitors such as mesenchymal stem cells (MSCs) can migrate and differentiate into odontoblast-like cells, leading to the formation of reparative dentin. For differentiation using stem cells, it is crucial to provide conditions similar to the complex and intricate in vivo environment. The purpose of this study was to evaluate the potential of differentiation into odonto/ osteoblasts, and compare co-culture with/without epithelial cells. Methods: MSCs and epithelial cells were successfully isolated from dental tissues. We investigated the influences of epithelial cells on the differentiation process of dental pulp stem cells into odonto/osteoblasts using co-culture systems. The differentiation potential with/without epithelial cells was analyzed for the expression of specific markers and calcium contents. Results: Differentiated odonto/osteoblast derived from dental pulp tissue-derived mesenchymal stem cells with/without epithelial cells were evaluated by qRT-PCR, immunostaining, calcium content, and ALP staining. The expression of odonto/ osteoblast-specific markers, calcium content, and ALP staining intensity were significantly increased in differentiated cells. Moreover, the odonto/osteogenic differentiation capacity with epithelial cells co-culture was significantly higher than without epithelial cells co-culture. Conclusions: These results suggest that odonto/osteogenic differentiation co-cultured with epithelial cells has a more efficient application.
The increase in the use of artificial intelligence (AI) in the workplace has introduced changes to traditional working environments. However, these are changes not only to employee productivity but also to how employees feel and think about their work. Based on prior research that has suggested connections between employees’ perceptions of AI and their emotions and thoughts at work, the present study tested a moderated mediation model in which the perception of AI opportunity is indirectly related to job insecurity via employee hope, with tenure as a moderator. Data obtained from 290 Korean full-time employees illustrated that the perception of AI opportunity was negatively related to job insecurity through hope acting as a mediator. In addition, this indirect relationship was found to be dependent on the moderating role of tenure. Specifically, at lower levels of tenure, the aforementioned indirect relationship was statistically significant, but at higher levels of tenure, this indirect relationship was no longer found to be statistically significant. The implications, limitations, and future research directions of this study are discussed.
Pollination is an important ecosystem service mostly provided by diversity of pollinating insects and other animals. As in the anthropocene biodiversity crisis with the climate change, pollination systems are experiencing strongly challenged such as pollinator diversity and abundance decline, pollinator health weakness, pollinator-plant network instability as well as the crop-pollinator habitat fragmentation and insuitability. Here we present some research progress conducted from our group in the last decade. As the pollination dependence of Korean agriculture increases, pollination contribute ap. one forth of national agricultural production, and is responsible substantial portion of vitamin and mineral provisioning. Pollinator diversity is declining in various crop systems and network connectivity is decreasing. Still in agricultural landscape, honeybee (Apis spp) is the main pollinator, accounting ap. 70% of bees, and showed the possible resource partitioning between the native, A. cerana and the introduced, A. mellifera. Simulation of crop-pollinating insect distribution suitability showed up and down directional responses, but more on the negative Further research area for better understanding and stabilizing the plant-pollinator system was proposed.
Currently, off-site dose calculations for nuclear power plants are conducted using a computer program (K-DOSE 60). The program is developed based on the regulatory guidelines of the Korea Institute of Nuclear Safety (KINS), which is a domestic nuclear regulatory agency. In this study, a domestic application of the International Atomic Energy Agency (IAEA) TRS (Technical Reports Series)-472 methodology for 3H and 14C in liquid effluents was studied. The dose-evaluation methods adopted and the program configuration for dose evaluation are described based on 3H and 14C in the liquid-effluent-evaluation module of the computer program. The accuracy of the program is verified by comparing the program-calculated results with hand calculation values. Furthermore, a comparative evaluation with LADTAP II, which is a liquid-effluent-evaluation methodology developed by the U.S. NRC (Nuclear Regulatory Commission), is performed. The result confirms that the program-calculated results for the IAEA TRS-472 methodology are consistent with the hand calculation values. Meanwhile, the result of comparative evaluation with LADTAP II indicates different results depending on the methodology used.
압축센스(Compressed SENSE) 기법은 검사 시간을 획기적으로 단축할 수 있으나, 시간 단축을 위한 기법적용 시 가속계수를 증가시키면 인공물의 발생이 영상에서 증가하는 문제점이 있다. 이에 인공물이 발생하지 않으면서 검사 시간을 최대한 단축할 수 있는 최적의 압축센스 가속계수를 제시하고자 하였다. 연구 방법은 인공물이 발생하지 않는 가속계수 1.0을 기준으로 0.5 간격씩 5.0까지 무릎관절 자기공명영상의 팬텀 실험과 임상실험 영상을 획득한 후, 방사선사 10명이 5점 척도로 영상을 평가하여 유의한 차이가 있는지 판단하였다. 연구 결과 T1 강조영상과 T2 강조 영상 모두 팬텀 실험은 가속계수 2.0 이하로 하였을 때 임상실험은 3.0 이하로 하였을 때 기준이 되는 1.0 영상과 차이가 없었다. 결론적으로 무릎관절 자기공명영상 검사 시 인공물이 발생하지 않으며 검사 시간을 최대로 단축할 수 있는 최적의 압축센스 가속계수는 팬텀 실험의 경우 2.0, 임상실험의 경우 3.0이 적정하리라 판단된다.