검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 10

        1.
        2019.06 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Ice accumulation on Aluminum Conductor Steel Reinforced(ACSR) cable during winter is an important matter in terms of safety, economy, and efficient power supply. In this work, the ice adhesion strengths of ACSR cable oxidized during different periods(7 years oxidized and 15 years oxidized) are evaluated. At first, a plate type dry oxidation standard specimen, whose surface characteristics are similar to those of ACSR cable, is prepared. Dry oxidation standard specimens are heat-treated at 500 °C for 20, 60, and 120 minutes in order to obtain different degrees of oxidation. After the dry oxidation, surface properties are analyzed using contact angle analyzer, atomic force microscopy, spectrophotometer, and gloss meter. The ice adhesion strengths are measured using an ice pull-off tester. Correlations between the surface properties and the ice adhesion strength are obtained through a regression analysis indicating a Boltzmann equation. It is revealed that the ice adhesion strength of 15- year oxidized ACSR cable is approximately 8 times higher than that of ACSR-bare.
        4,000원
        2.
        2019.01 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Severe wall thinning is found on the tube of a low-pressure evaporator(LPEVA) module that is used for a heat recovery steam generator(HRSG) of a district heating system. Since wall thinning can lead to sudden failure or accidents that lead to shutdown of the operation, it is very important to investigate the main mechanism of the wall thinning. In this study, corrosion analysis associated with a typical flow-accelerated corrosion(FAC) is performed using the corroded tube connected to an upper header of the LPEVA. To investigate factors triggering the FAC, the morphology, composition, and phase of the corroded product of the tube are examined using optical microscopy, scanning electron microscopy combined with energy dispersive spectroscopy, and x-ray diffraction. The results show that the thinnest part of the tube is in the region where gas directly contacts, revealing the typical orange peel type of morphology frequently found in the FAC. The discovery of oxide scales containing phosphate indicates that phosphate corrosion is the main mechanism that weakens the stability of the protective magnetite film and the FAC accelerates the corrosion by generating the orange peel type of morphology.
        4,000원
        3.
        2018.07 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Fatigue crack growth retardation of 304 L stainless steel is studied using a neutron diffraction method. Three orthogonal strain components(crack growth, crack opening, and through-thickness direction) are measured in the vicinity of the crack tip along the crack propagation direction. The residual strain profiles (1) at the mid-thickness and (2) at the 1.5 mm away from the mid-thickness of the compact tension(CT) specimen are compared. Residual lattice strains at the 1.5 mm location are slightly higher than at the mid-thickness. The CT specimen is deformed in situ under applied loads, thereby providing evolution of the internal stress fields around the crack tip. A tensile overload results in an increased magnitude of the compressive residual stress field. In the crack growth retardation, it is found that the stresses are dispersed in the crack-wake region, where the highest compressive residual stresses are measured. Our neutron diffraction mapping results reveal that the dominant mechanism is by interrupting the transfer of stress concentration at the crack tip.
        4,000원
        4.
        2017.12 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        The use of continuous welded rail is increasing because of its many advantages, including vibration reduction, enhanced driving stability, and maintenance cost savings. In this work, two different types of continuous welded rails were examined to determine the influence of repeated wheel-rail contact on the crystal structure, microstructure and mechanical properties of the rails. The crystal structure was determined by x-ray diffraction, and the microstructure was examined using optical microscopy and scanning electron microscopy. Tensile and microhardness tests were conducted to examine the mechanical behaviors of prepared specimens taken from different positions in the cross section of both newly manufactured rail and worn rail. Analysis revealed that both the new and worn rail had a mixed microstructure consisting of ferrite and pearlite. The specimens from the top position of each rail exhibited decreased lamella spacing of the pearlite and increased yield strength, ultimate tensile strength and hardness, as compared with those from other positions of the rail. It is thought that the enhanced mechanical property on the top position of the worn rail might be explained by a mixed effect resulting from a directional microstructure, the decreased lamella spacing of pearlite, and work hardening by the repeated wheel-rail contact stress.
        4,000원
        5.
        2015.12 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Fatigue crack growth experiments were carried out on a 304 L stainless steel compact-tension(CT) specimen under load control mode. Neutron diffraction was employed to quantitatively measure the residual strains/stresses and the evolution of stress fields in the vicinity of a propagating fatigue-crack tip. Three principal stress components (i.e. crack growth, crack opening, and through-thickness direction stresses) were examined in-situ under loading as a function of distance from the crack tip along the crack-propagation path. The stress/strain fields, measured both at the mid-thickness and near the surface of the CT specimen, were compared. The results show that much higher compressive residual stress fields developed in front of the crack tip near the surface than developed at the mid-thickness area. The change of the stresses ahead of the crack tip under loading is more significant at the mid-thickness area than it is near the surface.
        3,000원
        6.
        2015.05 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        In-situ neutron diffraction has been employed to examine the effect of strain path on lattice strain evolution during monotonic and cyclic tension in an extruded Mg-8.5wt.%Al alloy. In the cyclic tension test, the maximum applied stress increased with cycle number. Lattice strain data were acquired for three grain orientations, characterized by the plane normal to the stress axis. The lattice strain in the hard {10.0} orientation, which is unfavorably oriented for both basal slip and {10.2} extension twinning, evolved linearly throughout both tests during loading and unloading. The {00.2} orientation exhibited significant relaxation associated with {10.2} extension twinning. Coupled with a linear lattice strain unloading behavior, this relaxation led to increasingly compressive residual strains in the {00.2} orientation with increasing cycle number. The {10.1} orientation is favorably oriented for basal slip, and thus showed a soft grain behavior. Microyielding occurred in the monotonic tension test and in all cycles of the cyclic test at an applied stress of ~50 MPa, indicating that strain hardening in this orientation was not completely stable from one cycle to the next. The lattice strain unloading behavior was linear in the {10.1} orientation, leading to a compressive residual strain after every cycle, which, however, did not increase systematically from one cycle to the next as in the {00.2} orientation.
        4,000원