In response to the global interest and efforts towards reducing plastic use and promoting resource recycling, there is a growing need to establish methods for recycling discarded fishing gear. In Korea, various technologies are being developed to recycle discarded fishing gear, but significant technical and policy challenges still remain. In particular, biodegradable gill nets require a pre-treatment process to separate biodegradable materials from other substances and to remove salt before recycling. Therefore, this study aims to develop a pre-treatment device for recycling biodegradable gill nets and to evaluate the feasibility of recycling them.
Most fishing nets used in fish cage aquaculture are made of synthetic fibers such as polyamide (PA) and polyethylene (PE). Therefore, it is challenging to maintain the internal volume of the fish cage due to biofouling, which can increase the load on the cage or reduce dissolved oxygen levels by impeding smooth current flow. To address this issue, research has been conducted to replace conventional synthetic fiber cage nets with brass nets, demonstrating certain benefits such as improved productivity and ease of fish cage management. However, given the need for a more thorough examination of brass fishing net weaving technology and performance, this study assessed the optimal weaving method for brass fishing nets to be used in fish cages. Additionally, it provided essential data for the practical application of brass fishing nets by evaluating their weight, tensile strength, elongation, fatigue resistance, and wear resistance. The study concluded that weaving brass fishing nets using the chain link method ensures durability, ease of installation, and compact storage in a scroll-like form. Moreover, due to their superior fatigue and wear resistance properties, brass nets can offer increased utility if appropriate net diameter and length are selected to compensate for their higher weight per unit area and relatively higher cost compared to existing fiber fishing nets.
Recently, as the global problem of marine debris and marine plastics is getting serious, various ways to solve them have been proposed, and the use of the biodegradable fishing gear is proposed as an alternative. Currently, 13 types of biodegradable fishing gears are available, but their penetration rate is only 8.7%. However, the need for the use of the biodegradable fishing gear is growing as awareness of protecting marine ecosystems is growing. Therefore, in this study, the economic effects of the expansion of biodegradable fishing gear distribution in Korea's coastal areas were analyzed through the conservation of marine ecosystems, augmentation of fisheries resources, and augmentation of fishing efficiency. According to the analysis, the economic effects of 52,795 million won, 105,590 million won, and 158,385 million won was generated as the distribution of biodegradable fishing gear were expanded to 10%, 20% and 30% across all gill net and trap.
The concern on the greenhouse gas emissions is increasing globally. Especially, the greenhouse gas emission from fisheries is an important issue from the Paris Climate Change Accord in 2015. Furthermore, the Korean government has a plan to reduce the GHG emissions as 4.8% compared to the BAU in fisheries until 2020. However, the investigation on the GHG emissions from Korean fisheries rarely carried out consistently. Therefore, the quantitative analysis of GHG emissions from Korean fishery industry is necessary as a first step to find a relevant way to reduce GHG emissions from fisheries. The purpose of this research is to investigate which degree of GHG emitted from the major offshore fisheries such as offshore gillnet fishery, offshore longline fishery, offshore jigging fishery and anchovy drag net fishery. Here, we calculated the GHG emissions from the fisheries using the Life Cycle Assessment method. The system boundary and input parameters for each process level are defined for the LCA analysis. The fuel use coefficients of the fisheries are also calculated according to the fuel type. The GHG emissions from sea activities by the fisheries will be dealt with. Furthermore, the GHG emissions for the unit weight of fishes are calculated with consideration to the different consuming areas as well. The results will be helpful to understand the circumstances of GHG emissions from Korean fisheries
In pelagic longline, deploying the gear such that the depth of the hook is the same as that of the target fish is important to improve the fishing performance and selectivity. In this study, the depth of the tuna longline hook was estimated using the mass-spring model, catenary curve method, and secretariat of the pacific commission Pythagorean method in order to improve the performance of the longline gear in Fiji. The former two methods were estimated to be relatively accurate, and the latter showed a large error. Further, the mass-spring model accounted for the influence of tidal current in the ocean, which was found to be appropriate for use in field trials.
Fuel consumption in fisheries is a primary concern due to environmental effects and costs to fishermen. Much research has been carried out to reduce the fuel consumption related to fishing operations. The fuel consumption of fishing gear in fishing operation is generally related to hydrodynamic resistance on the gear. This research is to propose a low drag generated midwater trawl in terms of the gear design improvement using simulations. The results from the simulation were verified with results that mirrored the model experiments. From the results, the resistance force of the proposed gear decreased to 29% compared to that of the current gear. Furthermore, the gear performance also improved with increased gear mouth compared to the current one. Therefore, the proposed gear will be helpful to reduce the greenhouse gases from fishing operation. It will also contribute to the fishing industry by saving fuel.
In this study, numerical method was used to assess technical properties and improve the Vietnamese tuna purse seine. Thedata were extracted from the two national level projects. The study results showed that average lead-line sinking speed reached 0.139 m/s and 0.143 m/s and maximum sinking depth was 61.6 m and 65.8 m for The gears 2003 and 2014 respectively. The maximum tension on ring line of The gear 2003 was 4,742 kgf and 2014 was 4,219 kgf. The improved tuna purse seines I, III and IV showed similar sinking speed results with 0.220 m/s, 0.219 m/s and 0.219 m/s respectively. The average lead-line sinking speed of the improved gear II was lowest with 0.215 m/s. The maximum lead-line sinking depth of the four improved gears I, II, III and IV were 116 m, 112 m, 115 m and 114.9 m respectively. Maximum tension on ring line of the improved gears I, II, III and IV were 5,657 kgf, 5,406 kgf, 5,645 kgf and 5,654 kgf respectively. The improved tuna purse seine IV is the most suitable for Vietnamese tuna purse seine fishery, Which corresponds with tuna purse seiner scale and its fishing supporting equipment at the present.
Nowadays, consumption of fisheries products is increasing. There are several factors, one of which is a quantitative development through aquaculture. Another factor is an increase qualitative consumption of fish which require that fish be supplied alive. This requires a lot of technical effort to transport the live fish that have low survival rate (c.f. tuna and mackerel) in coastal waters and in the open sea. To develop a towing cage for transporting the live fish, model test in a circulate water channel and simulation by computer tool were carried out. In order to spread vertically, floats were attached at the upper part of the cage, and iron chains attached at the lower part of the cage. For horizontal spreading, kites were attached on the cage. The tension and spreading performance of the cage were measured. The result shows that the tension and reduction ratio of inside volume of the cage were tended to increase with increased towing speeds. The suitable operation condition in towing cage was 1.0 m/s towing speeds with vertical spreading force 8.7 kN, horizontal spreading force 5.6 kN; in this case the reduction ratio of inside volume of the cage was estimated as 25%.