In response to the global interest and efforts towards reducing plastic use and promoting resource recycling, there is a growing need to establish methods for recycling discarded fishing gear. In Korea, various technologies are being developed to recycle discarded fishing gear, but significant technical and policy challenges still remain. In particular, biodegradable gill nets require a pre-treatment process to separate biodegradable materials from other substances and to remove salt before recycling. Therefore, this study aims to develop a pre-treatment device for recycling biodegradable gill nets and to evaluate the feasibility of recycling them.
We analyzed risk factors of coastal gillnet fishers during fishing process and considered work safety measures to reduce safety accidents during fishing using a UWB (ultra wideband) based positioning system. The static position accuracy of the UWB based positioning system was 45 cm. When entering a port, there is a risk of falling overboard. When casting a net, there was a risk of falling overboard due to being hit by fishing gear or guards, or getting caught in a buoy line or sinker line. When hauling a net, there is a risk of getting caught between fishing gear and net hauler, and the risk of musculoskeletal disorders due to repetitive work over a long period of time. Most safety accidents during work on fishing boats are blamed on human errors of the fisher and skipper, but safety accidents occur due to a mixture of mechanical and equipment factors, work and environmental factors, and management factors in addition to human errors. Therefore, the 4E were presented as countermeasures against the 4M, which are causes of safety accidents, and the proposed measures were used to identify risk factors for operation process, comply with work safety rules, and ensure the wearing of personal protective equipments. We need to reduce safety accidents during work by making it part of our daily routine. These research results can be used in the future for optimal placement of fishing gear and fishing nets in other coastal industries where safety accidents occur frequently.
The angle of attack of a cambered otter board in a bottom trawl was estimated using a three-dimensional semi-analytic treatment of a towing cable (warp) system that was applied to the field experiments of a bottom trawl obtained by the Scanmar system. The equilibrium condition of the horizontal component and vertical component of forces was used to the three forces acting on the otter board in the horizontal plane. Those forces were the force on the warp at the bracket, hydrodynamic lift and drag forces on the otter board and the force on the hand rope attached just behind the otter board. Also the equilibrium of moment about the front edge of the otter board was used to find out the angle of attack of the cambered otter board. When the warp length was 120m and 180m long and the towing speed was between 1.23 and 1.90 m/s, the estimated angle of attack of the cambered otter board was ranged between 26.1° and 29.6°, respectively, though the maximum lift force was at the angle of attack 22.6°. The angle of attack of the otter board was tended to increase weakly with the longer length of warp (180 m) at the same towing speed in the experiment.
An estimation of the headline height of a bottom trammel net set across under uniform current was achieved numerically from a differential equations describing the forces of the net and compared with the measured value in a flume tank experiment. The analysis on the shape of the bottom trammel net with the headline free was based on the equilibrium equation of the bottom gill net which was modified and slack of the trammel net was varied with net depth as shown in the tank experiment. The differential equations were solved by a forth-order Runge-Kutta method. The estimated headline heights with varied slack was found to be closer than that with constant slack when compared with the actual values.