The GMT-Consortium Large Earth Finder (G-CLEF) is the first instrument for the Giant Magellan Telescope (GMT). G-CLEF is a fiber feed, optical band echelle spectrograph that is capable of extremely precise radial velocity measurement. G-CLEF Flexure Control Camera (FCC) is included as a part in G-CLEF Front End Assembly (GCFEA), which monitors the field images focused on a fiber mirror to control the flexure and the focus errors within GCFEA. FCC consists of an optical bench on which five optical components are installed. The order of the optical train is: a collimator, neutral density filters, a focus analyzer, a reimager and a detector (Andor iKon-L 936 CCD camera). The collimator consists of a triplet lens and receives the beam reflected by a fiber mirror. The neutral density filters make it possible a broad range star brightness as a target or a guide. The focus analyzer is used to measure a focus offset. The reimager focuses the beam from the collimator onto the CCD detector focal plane. The detector module includes a linear translator and a field de-rotator. We performed thermoelastic stress analysis for lenses and their mounts to confirm the physical safety of the lens materials. We also conducted the global structure analysis for various gravitational orientations to verify the image stability requirement during the operation of the telescope and the instrument. In this article, we present the opto-mechanical detailed design of G-CLEF FCC and describe the consequence of the numerical finite element analyses for the design.
In response to a regulatory mandate, all nuclear licensees are obligated to establish an information system that can provide essential information in the event of a radiation emergency by connecting the monitoring data of the Safety Parameter Display System (SPDS) or equivalent system to the Korea Institute of Nuclear Safety (KINS). Responding to this responsibility, the Korea Atomic Energy Research Institute (KAERI) has established the Safety Information Transmission System (SITS), which enables the collection and real-time monitoring of safety information. The KAERI monitors and collects safety information, which includes data from the HANARO Operation Work Station (OWS) and the HANARO & HANARO Fuel Fabrication Plant (HFFP) Radioactivity Monitoring System (RMS), and the Environmental Radiation Monitoring System (ERMS) & meteorological data. Currently, the transmission of this safety information to the AtomCARE server of the KINS takes place via the SITS server located in the Emergency Operations Facility (EOF). However, the multi-path of transmission through SITS has caused problems such as an increase in data transmission interruptions and errors, as well as delays in identifying the cause and implementing system recovery measures. To address these issues, a new VPN is currently being constructed on the servers of nuclear facilities that generate and manage safety information to establish a direct transmission system of safety information from each nuclear facility to the AtomCARE server. The establishment of a direct transmission system that eliminates unnecessary transit steps is expected to result in stable information transmission and minimize the frequency of data transmission interruptions. As of the improvement progress, a security review was conducted in the second and third quarters of 2022 to evaluate the security of newly introduced VPNs to the nuclear facility server, and based on the results of the review, security measures were strengthened. In the fourth quarter of 2022, the development of a direct transmission system for safety information began, and it is scheduled to be completed by the fourth quarter of 2023. The project includes the construction of the transmission system, system inspection, and comprehensive data stability testing. Afterward, the existing SITS located in the EOF will be renamed as the Safety Information Display System (SIDS), and there are plans to remove any unused servers and VPNs.
Pseudo-pheochromocytoma is defined as an adrenal tumor that has the typical characteristics of pheochromocytoma likely hypertension but is histopathologically diagnosed to other types of adrenal tumors. 11-year-old, castrated male Maltese presented for a left adrenal mass with hypertension. According to clinical signs and radiological features, a temporary diagnosis was made of pheochromocytoma. The adrenalectomy was performed and the histopathological examination of the resected adrenal gland was diagnosed as cortical adenocarcinoma. This report describes the case of pseudo-pheochromocytoma in a dog and implies the salience that even if pheochromocytoma is diagnosed based on all test results, pseudo-pheochromocytoma should not be excluded.
IAEA has the right and obligation to verify the states’ commitments for safeguards under the comprehensive safeguards agreement and additional protocols. There are IAEA inspections such as PIV, DIV, RII, SNRI under these agreements. As part of the implementation of this mission, the IAEA inspectors perform the verification for the state’s accounting reports related the nuclear materials such as ICR, PIL, MBR. To do well this verification, the inspectors often use non-destructive analysis, which aims to measure attributes of the items during the inspections. This kind of an activity aims to detect the missing nuclear items or wrong things in the facility using nuclear materials. In general, NDA techniques use the neutron counting and gamma ray spectrometry. Besides, IAEA also performs several verification measures as follows. - C/S (Containment and Surveillance techniques) is to maintain the continuity of the knowledge by giving assurance that its containment remains unimpaired. - Unattended and remote monitoring is to transmit the data from onsite of the facility through the on-line system. - E/S (Environmental Sampling) is to detect the minute traces of nuclear materials by smearing some points in the on-site of the facility. Nowadays, the above mentioned techniques are important ways to increase the effectiveness of the safeguards approaches reducing IAEA actual costs. To strengthen the effectiveness and improve the efficiency of safeguards approaches, IAEA always develops and adopts the techniques and equipment for safeguards. Especially, IAEA seems to be concerned with the improvement and development of the non-destructive techniques and equipment in the fields of nuclear fuel cycle. IAEA develops the new techniques and equipment through the help of MSSP (Member States Support Programs). The IAEA defines the needs of safeguards and coordinates the support programs. After the IAEA tests and evaluates the techniques/equipment developed, IAEA decides whether to use the developed techniques and equipment during the inspection by the procedure of the IAEA quality assurance. This paper aims at studying the current changes of the IAEA equipment such as DCVD, NGSS and HCES.