Paradental cysts characteristically develop adjacent to the cervical margin on the lateral aspect of a tooth root and result from inflammatory processes within the periodontal pocket. Standard management usually involves cyst enucleation while striving to retain the affected tooth. Recurrence rates are infrequent following complete removal of the lesion. However, intentional replantation becomes necessary in cases with anatomical constraints or accessibility issues. We present the case of a 13-year-old female patient exhibiting delayed eruption of the mandibular left second molar, attributed to a cystic lesion located on the lingual-coronal aspect of the tooth.
Orthokeratinized odontogenic cysts are developmental cysts that occur in the jaw that account for approximately 7%–17% of all cysts in the jaws. Studies have shown that malignant transformation of odontogenic cysts most often occurs in inflammatory cysts, such as periapical cysts, but malignant transformation of orthokeratinized odontogenic cysts has also been reported. In this report, we present an uncommon case of squamous cell carcinoma arising from an orthokeratinized odontogenic cyst.
An in vtro nucellar polyembryo propagation method was established with mature seed of the Citrus junos Sieb. 7-8 nucellar polyembryos per seed were induced on MS basal medium without plant growth regulators. The polyembryos developed to complete plantlets on teatment with IBA. These shoots grew further in MS medium without plant growth regulators. Rooting of shoots occurred on MS medium supplemented with IBA. These plantlets were successfully transplanted to small plastic pot containing soil mixture. Somatic embryos were induced from nucellar polyembryo and maturation occurred spontaneously from proliferating cultures on MS medium without growth regulators. Random Amplified Polymorphic DNA (RAPD) marker analysis of in vitro and in vivo grown junos orange showed identical polymorphism indicative of their genetic stability. The RAPD polymorphism produced revealed same banding pattern in each regenerant. Hence, propagaton of junos orange by nucellalr polyembryos was efficient and produced in genetically stable plants under in vitro conditions.