This study investigated the perceptions of elementary school preservice teachers in their 4th year at KEducation University, an elementary school teacher-training institution, on the nature of science (NOS). To examine the differences in elementary school preservice teachers’ perceptions of NOS according to their high school career aptitude, we conducted in-depth interviews with two students each in the humanities and social sciences (HS) and natural sciences (NS) based on the subjects that they had taken while attending high school. For this purpose, we used the Views of Nature of Science Form C (VNOS-C) and Views about Scientific Inquiry (VASI) questionnaires, which were reconfigured. The main research results were that the elementary school preservice teachers showed a positivistic perspective on the NOS, validity of scientific knowledge, difference between theory and law, and social and cultural embeddedness of science. However, they had a latest perspective on the tentativeness of scientific knowledge, observation and inference, and the role of imagination and creativity. In particular, there were clear differences in perception between HS and NS teachers in the areas of tentativeness of scientific knowledge and understanding of observation and inference. Based on these research results, educational implications for improving the science education competencies of preservice elementary school teachers were proposed.
과학 실천은 학습 소재에 해당하는 대상이나 관찰과 측정을 위한 도구와 같은 ‘이질적인 것’들과 새로운 관계를 맺는 과정이다. 최근 전공 교과에 대한 과학 실천이 점차 강조되고 있는 시점에서 본 연구에서는 천체 관측이라는 지 구과학 교과의 특유한 과학 실천을 새롭게 들여다보고자 했다. 이를 위해 천체 관측을 경험한 학생들과 수많은 물질들 이 만들어 낸 의미를 ‘-되기’의 경험으로 바라보았다. 연구의 방법으로는 A고등학교의 천체 관측 활동에 참여하는 17명 의 학생들이 작성한 활동 일지, 사진 자료 등을 수집하고 심층 면담을 진행하였다. 수집한 자료는 상황 분석 방법을 재 구성하여 살펴보았다. 주요 연구결과로는, 학생들의 존재-인식론적 ‘-되기’의 과정으로 1) 반복을 통해 새로움을 발견하 는 과정, 2) 천체 관측 활동의 정동을 전달하기 위한 ‘설명 기계’가 되어가는 과정, 3) 안정적인 영토를 벗어나 문턱을 넘는 과정을 발견하였다. 연구 결과를 바탕으로 지구과학교육과 교육 연구를 위한 교사의 실천과 새로운 접근 방식에 대해 제언하였다.
The goal of this study was to examine the PCK required for science teachers and PCK required for university teacher educators in terms of school science knowledge, science teaching and learning, and the role of science educators, which are the main axes of science education in future schools, and to explore the relationship between them. This study is a follow-up to a previous stage of research that explored the prospects for changes in schools in the future (2040-2050) in terms of school knowledge, educational methods, and teacher roles. Based on in-depth interviews, qualitative and semantic network analyses were conducted to derive and compare the characteristics of PCK and PCK. As for the main research results, science teacher PCK in future schools should include expertise in organizing science classes centered on convergence topics, expertise in digital platforms and ICT use, and expertise in building a network of learning communities and resources, as part of the expertise of human teachers differentiated from AI. Teacher educators' PCK includes expertise in the research and development of T-L methods using AI, expertise in the knowledge construction process and practice, and expertise in developing preservice teachers’ research competencies. Discussed in the conclusion is the change in teacher PCK and teacher educator PCK with changes in science knowledge, such as convergence-type knowledge and cognition-value integrated knowledge; and the need to emphasize values, attitudes, and ethical judgments for the coexistence of humans and non-humans as school science knowledge in the post-humanism future society.
The purpose of this study was to examine the status of the field application of the Science II career electives with the application of the 2015 revised curriculum up to the 3rd year of high school. This study focused on examining high school science teachers’ perceptions of the student-participatory class and process-centered assessment in Science II subjects, which are career-intensive high school science electives. A total of 192 science teachers responded to the survey questionnaire, and 12 teachers participated in interviews. In the in-depth interviews conducted to supplement the survey results, questions were asked about changes in the overall class, the status of student-participatory classes, and changes in the assessment of Science II subjects due to the emphasis on process-centered assessment. The main research results included teachers’perceptions of changes in teaching and assessment methods with the application of the revised curriculum, the degree to which the eight skills used in Science II classes develop the key competencies of science, and the teaching and assessment methods commonly used in Science II classes. Science teachers generally agreed with the purpose and necessity of introducing student-participatory classes and process-centered assessment, which are the core purpose of the 2015 revised curriculum. However, they had difficulties in practice due to the excessive content of Science II subjects. Problems were also encountered with securing objectivity and fairness during assessments and the operation of online science classes due to COVID-19.
In this study, we investigated the difference in the affective characteristics between science-gifted students and general students through the positive experiences about science (PES) index. We also explored ways to apply the characteristics of gifted classes suggeseted by the teachers of this study, which had a positive effect on science-gifted students, to general science classes. For this study, a PES survey was carried on middle school science-gifted students enrolled in the gifted education center in the central region and general middle school students in the same area who had no experience in gifted education. Based on the survey result, we conducted in-depth interviews with teachers, having teaching experience with both science-gifted and general students. The results revealed that science-gifted students showed a significantly higher PES index than general students in all five areas of PES. The area with the largest difference between the two groups was science-related self-concept and the smallest was science academic emotion. Teachers suggested ways to apply the characteristics of science-gifted classes to general science classes, such as organizing general science classes around inquiry activities, supporting class materials such as MBL or tablets, reconstructing the classes using materials reflecting students’ needs, and changing the textbook content and narrative style, to induce students' interest and curiosity. Based on the study results, ways to enhance the PES through science classes for general students were proposed.
In this study, we analyzed the development of high school students’ argumentation through their writings on socio-scientific Issues (SSI) related to the Climate Change Unit in the Earth Science I curriculum. Pre- and post-writing assignments on the two main causes of global warming were analyzed and compared. In addition, an in-depth interview of the focus group was conducted with 7 students who showed a distinct change in the level of argumentation. According to the results, 16 of 52 students remained at the same argumentation level in pre- and post-writing assignments, and students remaining at Level 2 among five levels had difficulty in understanding the Toulmin’s argument pattern (TAP) structure. Using the TAP structure, 29 of 52 students demonstrated increased argumentation levels in the post-writing assignments. The conclusions include that writing lessons on SSI using the TAP in Earth science classes can improve the level of high school students’ argumentative writing, and that the level of students’ argumentation can develop with the elaboration of their level of falsification. Also, it is suggested that the science curriculum should increase students' science writing competencies by specifying science writing as one of the goals.
In this research, the change of Korean middle-school science education environments is investigated through analyzing eighth graders’ survey data collected over the past 20 years of TIMSS. We extracted educational context variables that provide meaningful information on changes of Korean science education, and have been surveyed more than 3 study cycles up to TIMSS 2015. The selected educational context variables include school resources and school climate from the school principal’s questionnaires, and teacher characteristics and instructional activities from the teacher’s questionnaires. For each context variable, we analyzed its trend over TIMSS cycles, and discussed its implications in light of Korean educational policy and curriculum changes. Based on the results, we recommended several ways that help to improve science teaching and learning in light of lab assistants, computer availability, teacher learning community, and middle school Earth science curriculum
The purpose of this research is to investigate characteristics of science content knowledge and pedagogical content knowledge shown in the primary school science classes. Through analysis of classroom teaching, explore the features and differences between primary and secondary school science PCK. Using open-ended interviews with the teachers and group discussions on a regular basis to analyze and compare classes of five primary school teachers, the relationship between CK and PCK. Regardless of the school level the teacher's PCK and professionalism is required with varying focus and emphasis. The features of the primary school teacher's PCK are as follows: Firstly, elementary teach secondary teach content, teachers value pedagogical knowledge (PK) content knowledge (CK). The primary school PCK requires more of understanding of students and teaching methods that to subject areas. PCK be without content knowledge, and the teacher's PCK is subject-specific In addition to the characteristics of PCK in the primary school science teaching, ways to set up professional exchange or collaboration between primary and secondary teachers, and to provide supplementary in-service training focused on content knowledge for primary school teachers.